首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1514篇
  免费   60篇
  国内免费   108篇
林业   166篇
农学   63篇
基础科学   55篇
  702篇
综合类   392篇
农作物   29篇
水产渔业   50篇
畜牧兽医   132篇
园艺   34篇
植物保护   59篇
  2024年   5篇
  2023年   27篇
  2022年   53篇
  2021年   33篇
  2020年   49篇
  2019年   60篇
  2018年   33篇
  2017年   71篇
  2016年   65篇
  2015年   69篇
  2014年   74篇
  2013年   79篇
  2012年   80篇
  2011年   120篇
  2010年   111篇
  2009年   95篇
  2008年   83篇
  2007年   105篇
  2006年   93篇
  2005年   74篇
  2004年   44篇
  2003年   42篇
  2002年   19篇
  2001年   14篇
  2000年   20篇
  1999年   19篇
  1998年   19篇
  1997年   16篇
  1996年   19篇
  1995年   11篇
  1994年   15篇
  1993年   8篇
  1992年   10篇
  1991年   11篇
  1990年   11篇
  1989年   6篇
  1988年   9篇
  1987年   7篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1682条查询结果,搜索用时 15 毫秒
1.
Although the Mekong River is one of the world's 35 biodiversity hot spots, the large‐scale patterns of fish diversity and assemblage structure remain poorly addressed. This study aimed to investigate the fish distribution patterns in the Lower Mekong River (LMR) and to identify their environmental determinants. Daily fish catch data (i.e. from December 2000 to November 2001) at 38 sites distributed along the LMR were related to 15 physicochemical and 19 climatic variables. As a result, four different clusters were defined according to the similarity in assemblage composition and 80 indicator species were identified. While fish species richness was highest in the Mekong delta and lowest in the upper part of the LMR, the diversity index was highest in the middle part of the LMR and lowest in the delta. We found that fish assemblages changed along the environmental gradients and that the main drivers affecting the fish assemblage structure were the seasonal variation of temperature, precipitation, dissolved oxygen, pH and total phosphorus. Specifically, upstream assemblages were characterised by cyprinids and Pangasius catfish, well suited to low temperature, high dissolved oxygen and high pH. Fish assemblages in the delta were dominated by perch‐like fish and clupeids, more tolerant to high temperatures, and high levels of nutrients (nitrates and total phosphorus) and salinity. Overall, the patterns were consistent between seasons. Our study contributes to establishing the first holistic fish community study in the LMR.  相似文献   
2.
本文论述了暖卫工程跑、冒、滴、漏、堵等五大质量通病的发生原因及防治方法建议等。  相似文献   
3.
The temperature dependence of chemical reaction rates and microbial metabolism mean that temperature is a key factor regulating soil trace gas emissions and hydrochemistry. Here we evaluated a novel approach for studying the thermal response of soils, by examining the effects of temperature on gas emissions and hydrochemistry in (a) peat and (b) soil from a Sitka spruce plantation. A thermal gradient was applied along an aluminium bar, allowing soil to be incubated contemporaneously from 2 to 18 °C. The approach demonstrated clear differences in the biogeochemical responses of the two soil types to warming. The peat showed no significant emission of CH4 at temperatures below 6 °C, while above 6 °C, a marked increase in the rate of release was apparent up to 15 °C (Q10 = 2.5) with emissions being similar between 15 and 18 °C. Conversely, CH4 emissions from the forest soil did not respond to warming. Nitrate availability in the peat decreased by 90% between 2 and 18 °C (P < 0.01), whereas concentrations in the forest soil did not respond. Sulphate availability in the peat decreased significantly with warming (60%, P < 0.01), while the forest soil showed the opposite response (a 30% increase, P < 0.01). Conventionally, thermal responses are studied by incubating individual soil samples at different temperatures, involving lengthy preparation and facilities to incubate samples at different temperatures simultaneously. Data collected on a given thermal response is usually limited and thus interpolated or extrapolated. The thermal gradient method overcomes these problems, is simple and flexible, and can be adapted for a wide range of sample types (not confined to soil). Such apparatus may prove useful in the optimization of management practices to mitigate the effects of climate change, as thermal responses will differ depending on land use and soil type.  相似文献   
4.
The effect of NaNO2 and NaCl on the growth of 24 lactic acid bacteria strains isolated from vacuum-packed cooked ring sausages were examined by analyzing different growth parameters with Bioscreen. NaNO2 had a very limited effect on the growth of lactic acid bacteria at 50 and 100 mg/l but at 400 mg/l a more pronounced inhibitory effect was found. Bacterial growth was enhanced by 1-2% (w/v) of added NaCl, while NaCl concentrations above 3% (w/v) had a clear inhibitory effect. Leuconostoc isolates seemed to be more sensitive to sodium nitrite and sodium chloride than homofermentative lactobacilli strains. Among homofermentative lactobacilli, the strains resembling Lactobacillus curvatus were more sensitive to NaCl than those resembling Lactobacillus sake.  相似文献   
5.
【目的】探究新疆核桃砧木苗生长特征及生理特性对氮梯度的响应,为核桃砧木苗施氮标准化的探究奠定基础。【方法】以阿克苏厚皮农家种质核桃砧木苗为研究对象,进行不同梯度的氮素诱导,测定核桃砧木苗生长及生理指标。【结果】基于氮梯度加载下的核桃砧木苗株高、地径、叶片数、叶长、光合色素含量、可溶性蛋白质含量、可溶性糖含量、硝酸还原酶活性、谷氨酰胺合成酶活性均呈上升趋势,并在15 g.a-1.m-2处理下达到最高值。【结论】适量地增施氮肥有利于核桃砧木苗的生长、提高砧木苗体内营养物质含量以及促进氮代谢能力。  相似文献   
6.
The majority of dead organic material enters the soil carbon pool following initial incorporation into microbial biomass. The decomposition of microbial necromass carbon (C) is, therefore, an important process governing the balance between terrestrial and atmospheric C pools. We tested how abiotic stress (drought), biotic interactions (invertebrate grazing) and physical disturbance influence the biochemistry (C:N ratio and calcium oxalate production) of living fungal cells, and the subsequent stabilization of fungal-derived C after senescence. We traced the fate of 13C-labeled necromass from ‘stressed’ and ‘unstressed’ fungi into living soil microbes, dissolved organic carbon (DOC), total soil carbon and respired CO2. All stressors stimulated the production of calcium oxalate crystals and enhanced the C:N ratios of living fungal mycelia, leading to the formation of ‘recalcitrant’ necromass. Although we were unable to detect consistent effects of stress on the mineralization rates of fungal necromass, a greater proportion of the non-stressed (labile) fungal necromass C was stabilised in soil. Our finding is consistent with the emerging understanding that recalcitrant material is entirely decomposed within soil, but incorporated less efficiently into living microbial biomass and, ultimately, into stable SOC.  相似文献   
7.
The study of interactions between minerals, organic matter (OM) and microorganisms is essential for the understanding of soil functions such as OM turnover. Here, we present an interdisciplinary approach using artificial soils to study the establishment of the microbial community and the formation of macro-aggregates as a function of the mineral composition by using artificial soils. The defined composition of a model system enables to directly relate the development of microbial communities and soil structure to the presence of specific constituents. Five different artificial soil compositions were produced with two types of clay minerals (illite, montmorillonite), metal oxides (ferrihydrite, boehmite) and charcoal incubated with sterile manure and a microbial community derived from a natural soil. We used the artificial soils to analyse the response of these model soil systems to additional sterile manure supply (after 562 days). The artificial soils were subjected to a prolonged incubation period of more than two years (842 days) in order to take temporally dynamic processes into account. In our model systems with varying mineralogy, we expected a changing microbial community composition and an effect on macro-aggregation after OM addition, as the input of fresh substrate will re-activate the artificial soils. The abundance and structure of 16S rRNA gene and internal transcribed spacer (ITS) fragments amplified from total community DNA were studied by quantitative real-time PCR (qPCR) and denaturing gradient gel electrophoresis (DGGE), respectively. The formation of macro-aggregates (>2 mm), the total organic carbon (OC) and nitrogen (N) contents, the OC and N contents in particle size fractions and the CO2 respiration were determined. The second manure input resulted in higher CO2 respiration rates, 16S rRNA gene and ITS copy numbers, indicating a stronger response of the microbial community in the matured soil-like system. The type of clay minerals was identified as the most important factor determining the composition of the bacterial communities established. The additional OM and longer incubation time led to a re-formation of macro-aggregates which was significantly higher when montmorillonite was present. Thus, the type of clay mineral was decisive for both microbial community composition as well as macro-aggregation, whereas the addition of other components had a minor effect. Even though different bacterial communities were established depending on the artificial soil composition, the amount and quality of the OM did not show significant differences supporting the concept of functional redundancy.  相似文献   
8.
Both environmental and climatic changes are known to influence soil microbial biomes in terrestrial ecosystems. However, there are limited data defining the interactive effects of multi-factor environmental disturbances, including N-deposition, precipitation, and air temperature, on soil fungal communities in temperate forests. A 3-year outdoor pot experiment was conducted to examine the temporal shifts of soil fungal communities in a temperate forest following N-addition, precipitation and air temperature changes. The shifts in the structure and composition of soil fungal communities were characterized by denaturing gradient gel electrophoresis and DNA sequencing. N-addition regimen induced significant alterations in the composition of soil fungal communities, and this effect was different at both higher and lower altitudes. The response of the soil fungal community to N-addition was much stronger in precipitation-reduced soils compared to soils experiencing enhanced precipitation. The combined treatment of N-addition and reduced precipitation caused more pronounced changes in the lower altitude versus those in the higher one. Certain fungal species in the subphylum Pezizomycotina and Saccharomycotina distinctively responded to N fertilization and soil water control at both altitudes. Redundancy discrimination analysis showed that changes in environmental factors and soil physicochemical properties explained 43.7% of the total variability in the soil fungal community at this forest ecosystem. Variations in the soil fungal community were significantly related to the altitude, soil temperature, total soil N content (TN) and pH value (P < 0.05). We present evidence for the interactive effects of N-addition, water manipulation and air temperature to reshape soil fungal communities in the temperate forest. Our data could provide new insights into predicting the response of soil micro-ecosystem to climatic changes.  相似文献   
9.
A theoretical model is developed for the dropwise condensation heat transfer on the horizontal circular surface with radial gradient surface energy based on the heat transfer model of individual condensate drop and the size distribution model of condensate drop on homogeneous condensation surface.The effect of variation of contact angle on the gradient surface on condensation heat transfer and condensate drop size distribution is taken account of in this model.The theoretical calculation method was obtained to predict the dropwise condensation heat transfer coefficient on the horizontal circular surface with radial gradient surface energy under various wall subcooled temperature,contact angle profile on wall surface,and working fluid.The effects of surface energy gradient,wall subcooled temperature,and thermophysical properties of condensate on the condensation heat transfer are discussed respectively.The calculation results show that the condensation heat transfer coefficient increases slightly with the increase of wall subcooled temperature.As latent heat and surface tension increasing,the condensation heat transfer coefficient increases.A larger surface energy gradient induces a larger condensation heat transfer coefficient.  相似文献   
10.
Analysis is given to the direction characteristic of stress gradient in crackstructure by using three-dimensional line-type element,The purpose is considerably to reduce theoperation of computation and improve the computation precision in finite element analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号