首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
农作物   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Flowering time plasticity is a commonly occurring adaptive characteristic of fodder crops, including legumes, in arid and semiarid environments of the Mediterranean regions. Time of flowering is mainly influenced by genotype, temperature and photoperiod. Field experiments were carried out at Foggia (southern Italy) during successive growing seasons (from 8 to 16 growing cycles according to species) to study the relation among air temperature, photoperiod and duration of the morphological development of flowering in eight forage legume species: sulla (Hedysarum coronarium L.), sainfoin (Onobrychis viciifolia Scop.), pea (Pisum sativun L.), berseem clover (Trifolium alexandrinum L.), Persian clover (Trifolium resupinatum L.), faba bean (Vicia faba L.), common vetch (Vicia sativa L.) and hairy vetch (Vicia villosa Roth). Time to reach 10% flowering (EF) and 100% flowering (FF) were recorded. Rate of progress to flowering, defined as the inverse of time from sowing to EF and FF, was related to mean daily temperature, or to both mean daily temperature and mean photoperiod. Using the linear equations, the thermal time requirements (Tt) and the base temperature (Tb) expressed as heat units were determined by the x-intercept method for both EF and FF stages. Evaluation of flowering time was also based on days after planting (DAP), day of year (DOY) and on a photothermal index (PTI). For all species, a significant negative correlation (P ≥ 0.01) was found between planting date (PD) and DAP whereas PTI showed a significant negative relationship (P ≥ 0.05) only for faba bean, pea, berseem clover and common vetch. In sainfoin, sulla and berseem clover, the rate of progress to flowering was affected significantly (P ≥ 0.05) by both mean temperature and photoperiod. The Tt requirements to reach the EF and the FF stage ranged from 871 to 1665 °C day and from 1043 to 1616 °C day, respectively, for the studied species. Both phenological stages considered depended upon accumulated thermal time above a species-specific base temperature. Furthermore, in all legumes the onset of flowering only occurred when dual thresholds of a minimum Tt and a minimum photoperiod were reached, which were specific to each species.  相似文献   
2.
Spatial variations in phenological responses to temperature have not been reported for grasslands of the Qinghai-Tibetan Plateau. Using satellite-derived normalized difference vegetation index and meteorological records from 1982 to 2006, we characterized the spatial patterns of grassland green-up onset in relation to air temperature and precipitation before the growing season (“preseason” henceforth) in the central and eastern plateau by combining linear programming with correlation analysis. Green-up onset near half of the meteorological stations was significantly correlated (p < 0.10) with precipitation and thermal spring onset (TSO) date based on the cumulative temperature less than 6 weeks before the onset. The green-up onset paralleled the advance in TSO in the southwestern, southeastern, eastern, and northeastern parts of the plateau. The TSO and preseason precipitation (PPT) explained part of the inter-annual phenological variations, with r2 varying between 0.05 and 0.55 and averaging 0.28, and did not explain delay of green-up onset in some areas. Increasing preseason temperature tended to advance green-up onset in relatively moist areas. PPT exerted a stronger influence on green-up onset in drier areas. These results indicate spatial differences in the key environmental influences on spring phenology. To improve the ability to predict onset, ground-based community-level phenological studies and spatial scaling-up of the phenology-climate relationship will be necessary.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号