首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
林业   1篇
  17篇
植物保护   1篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
The immediate effect of low and high severity wildfires on the main soil properties, as well as their short‐ and medium‐term evolution under field conditions, was examined. The study was performed with three pine forest soils (two Leptosols and one Humic Cambisol, developed over granite and basic schist, respectively), located in the Atlantic humid temperate zone (Galicia, NW Spain). Samples were collected from the A‐horizon (0–5 cm depth) of the burnt and the corresponding unburnt soils, immediately and 3, 6 and 12 months after the wildfires. Most properties analysed exhibit immediate fire‐induced changes and different evolution depending on fire severity and soil type. In general, immediately after the fire pH and soil properties related to nutrients availability increased and cation exchange capacity decreased, whereas properties related to soil organic matter content (C, N, Fe and Al oxides) had a variable effect depending mainly on the soil studied; all these modifications were accentuated by fire severity. These effects were attenuated in the short term in the soil affected by a low severity wildfire, but they lasted for at least 1 year in the soils affected by high severity wildfires, particularly in the Leptosols. The results showed the importance of the fire as a disturbance agent in the dynamic of nutrients and soil organic matter that is directly related with soil quality in the Galician forest ecosystems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
Despite geotextile-mats having the potential for soil conservation, field studies on the effects of geotextiles on soil properties are limited. Hence, the utilization of palm-mat geotextiles as a potential soil conservation technique was investigated at Hilton, east Shropshire, U.K. (52°33′5.7″ N, 2°19′18.3″ W). Geotextile-mats constructed from Borassus aethiopum (Borassus palm of West Africa) and Mauritia flexuosa (Buriti palm of South America) leaves are termed Borassus mats and Buriti mats, respectively. Field experiments were conducted at Hilton during 2007–2009, to study the impacts of Borassus and Buriti mats on selected properties of the topsoil (0–5 cm). Ten fixed plots (10 × 1 m on a 15° slope) were established, with duplicate treatments. The treatments were: (i) bare soil; (ii) permanent grassed; (iii) bare soil with 1 m Borassus-mat buffer strips (area coverage ~ 10%) at the lower end of the plots; (iv) bare soil with 1 m Buriti mat buffer strips (area coverage ~ 10%) at the lower end of the plots; and (v) completely-covered with Borassus mats. Initial and final soil samples of the topsoil were collected and analysed for bulk density, aggregate stability, soil organic matter (SOM), total soil C (TSC), total soil N (TSN) and pH. Results indicate that, apart from Borassus completely-covered plots, soil bulk density increased and aggregate stability decreased in all plots after two years. Despite decreases in SOM contents in bare plots, SOM content did not change after two years in the grassed and geotextile treated plots. Treatments had no effects on changes in pH, TSC or TSN. Both Borassus and Buriti mat-covers within the buffer strip plots had little impact on SOM, TSC and TSN changes compared with bare soils within the same plots. Thus, Borassus buffer strip plots were very effective in maintaining some soil properties (i.e. SOM, TSC, and TSN) after two years of erosion by water. In summary, utilization of Borassus mats as buffer strips was very successful in conserving soil properties on a loamy sand soil.  相似文献   
3.
In 2006, the influence of different rates of applied mineral fertilizers and their combinations with bacterial inoculants [nitrogen (N)–fixing Klebsiella planticola and Enterobacter spp.] on the number of microorganisms from the N cycle in a Cambisol and the yield of maize was evaluated in this study. The results obtained implied that high rates of mineral fertilizers brought about an increase in the number of fungi and a decrease in the number of Azotobacter spp., oligonitrophiles, ammonifiers, and nitrifiers in soil. Combined application of microbial inoculants and low rates of mineral fertilizers resulted in the greatest increase in the number of Azotobacter spp., oligonitrophiles, and ammonifiers in soil. The greatest number of soil nitrifiers, as well as the grain yield of maize studied, were determined in the variants where combinations of the microbial inoculants and low and high rates of mineral fertilizers were applied.  相似文献   
4.
B. Terhorst   《CATENA》2007,71(3):467
At the slopes of the Jurassic cuesta scarp in SW-Germany, pedological and mineralogical investigations were carried out in landslide areas. So far, it is possible to distinguish two well-defined landslide areas, one of them belonging to the Pleistocene, the other one characterised by Holocene movements. In general, the distribution of soils and sediments is strongly linked to the age of landslide deposits. In Pleistocene landslide areas, the parent material of the studied soils is formed by periglacial cover beds of Late Pleistocene age, consisting of Jurassic, aeolian and volcanic components. The Upper Periglacial Cover Bed was recognised as the most important marker horizon in the studied slope areas. There, the existence of minerals originating from the eruption of the Laacher See volcano, dated to 12,900 yr BP, could be demonstrated for the first time. Most of the Pleistocene landforms are characterised by well-developed soils, like Clayic and Vertic Cambisols, whereas relic soils exclusively occur in the oldest parts of landslide deposits. Landslide areas affected by Holocene slope processes do not exhibit periglacial layers, as mass movements removed periglacial sediments and former soils extensively. As a consequence, the parent material is different from those of Pleistocene landslide areas. Therefore, sediments in these areas are characterised by Jurassic components and only initial soils are present.  相似文献   
5.
Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon (SOC) and its labile fractions, as well as soil aggregates and organic carbon (OC) associated with water-stable aggregates (WSA). Moreover, the labile SOC fractions play an important role in OC turnover and sequestration. The aims of this study were to determine how different corn straw returning modes affect the contents of labile SOC fractions and OC associated with WSA. Corn straw was returned in the following depths: (1) on undisturbed soil surface (NTS), (2) in the 0-10 cm soil depth (MTS), (3) in the 0-20 cm soil depth (CTS), and (4) no corn straw applied (CK). After five years (2014-2018), soil was sampled in the 0-20 and 20-40 cm depths to measure the water-extractable organic C (WEOC), permanganate oxidizable C (KMnO4-C), light fraction organic C (LFOC), and WSA fractions. The results showed that compared with CK, corn straw amended soils (NTS, MTS and CTS) increased SOC content by 11.55%-16.58%, WEOC by 41.38%-51.42%, KMnO4-C and LFOC by 29.84%-34.09% and 56.68%-65.36% in the 0-40 cm soil depth. The LFOC and KMnO4-C were proved to be the most sensitive fractions to different corn straw returning modes. Compared with CK, soils amended with corn straw increased mean weight diameter by 24.24%-40.48% in the 0-20 cm soil depth. The NTS and MTS preserved more than 60.00% of OC in macro-aggregates compared with CK. No significant difference was found in corn yield across all corn straw returning modes throughout the study period, indicating that adoption of NTS and MTS would increase SOC content and improve soil structure, and would not decline crop production.  相似文献   
6.
Soil organic carbon(SOC) has primary importance in terms of soil physics, soil fertility and even of climate change control. One hundred soil samples were taken from an intensively cultivated Cambisol to quantify SOC redistribution triggered by soil erosion under a subhumid climate, by the simultaneous application of diffuse reflectance(240–1 900 nm) and traditional physico-chemical methods.The representative sample points were collected from the solum along the slopes at the depth of 20–300 cm with a mean SOC content of 12 g kg~(-1). Hierarchical cluster analyses were performed based on the determined SOC results. The spatial pattern of the groups created were similar, and even though the classifications were not the same, diffuse reflectance had proven to be a suitable method for soil/sediment classification even within a given arable field. Both organic and inorganic carbon distributions were found to be a proper tool for estimations of past soil erosion processes. The SOC enrichment was found on two sedimentary spots with different geomorphological positions. Soil organic matter composition also differed between the two spots due to selective deposition of the delivered organic matter. The components with low-molecular-weight reached the bottom of the slope where they could leach into the profile, while the more polymerised organic matter compositions were delivered and deposited even before on a higher segment of the slope in an aggregated form. This spatial difference appeared below the uppermost tilled soil layer as well, referring the lower efficiency of conventional ploughing tillage in soil spatial homogenisation.  相似文献   
7.
Soil hydrological properties like infiltration capacity and hydraulic conductivity have important consequences for hydrological properties of soils in river catchments and for flood risk prevention. They are dynamic properties due to varying land use management practices. The objective of this study was to characterize the variation of infiltration capacity, hydraulic conductivity and soil organoprofile development on forest sites with comparable geological substrate, soil type and climatic conditions, but different stand ages and tree species in terms of the effects of forest transformation upon soil hydrological properties. The Kahlenberg forest area (50 km northeast of Berlin in the German northeastern lowlands) under investigation contains stands of Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica) of different age structures forming a transformation chronosequence from pure Scots pine stands towards pure European beech stands. The water infiltration capacity and hydraulic conductivity (K) of the investigated sandy-textured soils are low and very few macropores exist. Additionally these pores are marked by poor connectivity and therefore do not have any significant effect on water infiltration rate. Moreover, water infiltration in these soils is impeded by their hydrophobic properties. Along the experimental chronosequence of forest transformation, the thickness of the forest floor layer decreases due to enhanced decomposition and humification intensities. By contrast, the thickness of the humous topsoil increases. Presumably, changes in soil organic matter storage and quality caused by the management practice of forest transformation affect the persistence and degree of water repellency in the soil, which in turn influences the hydraulic properties of the experimental soils. The results indicate clearly that soils play a crucial role for water retention and therefore, in overland flow prevention. There is a need to have more awareness on the intimate link between the land use and soil properties and their possible effects on flooding.  相似文献   
8.
Background: Cover cropping appears as a useful land management practice with numerous benefits for ecosystem functions. Aim: The objectives of this study were to determine the effects of different winter cover crops on soil microbial biomass, activity, and community composition in intensively managed agriculture systems as function of cover crop diversity. Methods: For this purpose, an on‐farm experiment was conducted at a podzolized Stagnosol‐Cambisol during seven months growing oil radish as single cover crop and five different cover crop mixtures comprising 5 to 13 plant species. A fallow treatment was used as control. Phospholipid fatty acids were used to determine the soil microbial biomass and soil microbial community composition. Basal respiration of the soil microorganisms was measured as a proxy for microbial activity. Results: The results show that none of the cover crop mixture could increase soil organic carbon or total nitrogen content. Three cover crop mixtures and oil radish as single cover crop significantly increased soil microbial biomass by about 50% and all of the investigated cover crops significantly increased microbial respiration and metabolic quotient by 50–150%. Only highly diverse cover crop mixtures significantly increased individual microbial groups such as Gram‐positive and Gram‐negative bacteria, actinobacteria, and saprotropic and mycorrhizal fungi by about 20% compared to the control. However, the ratio of fungi to bacteria was not influenced by any of the cover crop mixtures under study. Conclusion: These findings corroborate that aboveground plant diversity is linked to belowground microbial diversity.  相似文献   
9.
The content of soil organic matter (SOM) can be considered as an important factor for evaluating soil fertility, crop yields, and environmental effects. Sensitive measurements for the assessment of quantitative changes in SOM shortly after the conversion of the management practice would be helpful to understand the SOM‐transformation cycle in more detail. Changes in SOM are reflected in modifications of total organic‐carbon (TOC) and total organic‐nitrogen (TON) contents. They are initially detectable in the readily decomposable fraction. We used hot water–extractable carbon (HWC) and nitrogen (HWN) as measurement of labile pools of SOM and aimed to quantify changes in contents of these C and N fractions in a sandy soil already few years after changing management strategy. In this context, we examined the impact of the conversion of a succession fallow (F) to organic (O) and intensive (I) agriculture on TOC, total N (TN), HWC, and HWN. The conversion of succession fallow to cultivated land resulted in a significant decrease of TOC, TN, and HWC at 0–10 cm soil depth. On average, TOC decreased approx. 0.70 g C kg–1 (approx. 9% of initial TOC), TN decreased approx. 0.13 g N kg–1 (approx. 17% of initial TN), and HWC decreased approx. 0.05 g C kg–1 (approx. 12% of initial HWC) within 3 years. Relatively rapid changes in TOC and TN contents indicated comparatively high proportions of decomposable C and N. These were reflected in comparable high HWC (ranging from 0.37 to 0.59 g C kg–1 at 0–30 cm soil depth) and HWN (ranging from 0.04 to 0.10 g N kg–1 at 0–30 cm) contents. These high contents as well as the high HWC : TOC and organic hot water–extractable N (HWNorg) : TN ratios (both between 5% and 7%) implied that the soil investigated has a high ability to provide short‐term available organic C and N compounds. Long‐lasting applications of high quantities of organic fertilizer in the past and high quantities of rhizodepositions were assumed as reasons for the high capability of soil to provide short‐term to medium‐term available C and N. Changes in the HWN content due to the fertilization or crop rotation were mainly based on changes in its inorganic part. This ranged between 10% and 30% of HWN. By discriminant function analysis, it could be shown that the HWN represents a suitably sensitive measurement for the determination of management‐specific impacts in terms of the N, but also of the C cycle. In combination with other C and particularly with other N parameters, the HWN allowed a statistically significant separation of comparable sites varying in management practice already 2 years after the conversion of the management system.  相似文献   
10.
Field experiments over a 3 y period were conducted in a winter wheat‐maize double‐cropping system at the Dongbeiwang Experimental Station, Beijing, China. Three different treatments of irrigation (sprinkler “suboptimal” and “optimized”; conventional flood irrigation) and N fertilization (none, according to Nmin soil tests, conventional) were studied with respect to effects on soil water balance, nitrate leaching, and grain yield. Under sprinkler irrigation, evaporation losses were higher due to a more frequent water application. On the other hand, in this treatment nitrate leaching was smaller as compared to flood irrigation, where abundant seepage fluxes >10 mm d–1 along preferential flow paths occurred. For quantifying nitrate leaching, passive samplers filled with ion‐exchange resins appeared to be better suited than a method which combined measurements of suction‐cup concentrations with model‐based soil water fluxes. As a result of the more balanced percolation regime (compared to that under conventional flood irrigation), there was a tendency of higher salt load of the soil solution in the rooting zone. Given a seepage rate of 50 mm, a winter wheat grain production of 5–6 t ha–1 required a total water addition of about 430 mm. Fertilizer treatments >100 kg N ha–1 did not result in any additional yield increase. An even balance between withdrawing and recharge of groundwater cannot be achieved with “optimized” irrigation, but with a reduction of evapotranspiration losses, adapted cropping systems, and/or by tapping water resources from reservoirs in more distant areas with surpluses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号