首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  2010年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Tephrochronology provides a valuable method of dating peat deposits but results may be compromised if tephra undergoes significant post-depositional movement. This study takes an experimental approach to investigate the processes of tephra taphonomy. Tephra was applied to peats and movement monitored over periods of up to 6 years. Experiments combined field studies on six British peatlands with rainfall simulation experiments in the laboratory. Tephra moved up to 15 cm down through the peat but the vast majority remained at the surface at time of deposition, forming a layer which accurately recorded the palaeo-surface. Tephra moved both down, by shards sinking through the peat, and up, with shards probably being moved by plant growth or with water table variability. The extent of tephra movement most likely depends on the density and porosity of the surface peat; there is no simple relationship with wetness. There is some indication that the extent of tephra movement depends on the tephra particle size but this will require further work to confirm. The taphonomy of tephra is an important issue which should be considered in all tephrochronology studies in peatlands.  相似文献   
2.
Acid rain sulphate (SO42−) deposition is a known suppressant of methane (CH4) emission from wetlands. However, the hypothesised mechanism responsible for this important biogeochemical interaction, competitive exclusion of methanogens by dissimilatory SO42− reducing bacteria (SRB), lacks supporting evidence. Here, we present data from an acid rain simulation experiment in the Moidach More peat bog of NE Scotland that strengthens this hypothesis. We report a tenfold increase in estimated SO42− reduction during periods when measured CH4 emission rates were suppressed relative to controls receiving only one-tenth the SO42− of treated plots, but no treatment effect on potential methane oxidation. This tenfold increase in estimated SO42− reduction indicates the presence of a more active population of SRB in plots where CH4 emissions were reduced by over 30%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号