首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   3篇
  国内免费   4篇
林业   8篇
农学   3篇
  52篇
综合类   15篇
农作物   10篇
水产渔业   3篇
畜牧兽医   3篇
园艺   1篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   7篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2010年   6篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
1.
酸性硫酸盐土酸消长的水动力机制研究   总被引:8,自引:0,他引:8  
以不同土壤湿度、不同干湿交替周期和原状土自然风干 8个处理进行酸性硫酸盐土 (简称ASS)室内模拟实验。通过对模拟过程内土壤pH、总硫化物性酸度和未氧化双氧水可氧化硫、交换性酸度、硫派生的实际酸度、KCl可提取硫等指标的动态变化过程的跟踪测定和分析显示 ,土壤水分条件是制约ASS酸度及酸形态转化的重要动力机制 ,可导致ASS酸度和酸形态的有规律变化。ASS产酸量和洗酸量受干湿交替周期制约  相似文献   
2.
酸化和有机质积累对茶园土壤铅生物有效性的影响   总被引:12,自引:3,他引:12  
本文用土培试验研究了质地差异较大的二种茶园土壤酸化和有机质积累引起的水溶性铅、有效态铅和铅的化学形态的变化。结果表明,土壤酸化可显著地促进其它形态的铅向可交换态铅转化,增加土壤铅的水溶性和生物有效性。当土壤pH较高(pH>4)时,增加土壤有机质可促进土壤铅的活化,但在pH较低(pH<4)的土壤中,有机质积累降低了土壤中的有效态铅。酸化和有机质积累对铅的生物有效性影响在砂质土壤比粘质土壤更为明显。  相似文献   
3.
Both laboratory and field experiments have demonstrated that aqueous aluminium can act as a paraciticide to the monogenean Gyrodactylus salaris Malmberg, 1957 infecting freshwater salmonids. However, the reproductive conditions of gyrodactylids surviving to cessation of an aluminium exposure is unknown. Therefore, Atlantic salmon (Salmo salar L.) parr infected with G. salaris was experimentally exposed to elevated concentrations of aqueous aluminium for more than 1 month. During this period, the infection increased the first week before it peaked and started to steadily decline approaching elimination. When almost all parasite specimens were eliminated, the water quality was adjusted to normal aluminium-poor freshwater. During the next 3 weeks, the surviving G. salaris were shown to clearly resume their reproduction. The experiment demonstrates the potential of the gyrodactylids to reproduce after cessation of an aluminium exposure. Thus, the as-yet unknown mechanism behind the toxic effects of aluminium on G. salaris survival and reproduction might to some extent be reversible. The present study gives further support for this metal as a parasiticide to G. salaris but demonstrates at the same time that in order to eliminate the parasites totally, the aluminium treatment must eradicate all G. salaris from the skin of the infected hosts. Furthermore, the potential development of resistance to aluminium should also be studied.  相似文献   
4.
酸化处理抑制杨木APMP纸浆返黄的研究   总被引:2,自引:0,他引:2  
用草酸、硫酸等对黑杨APMP浆进行酸化处理,研究了酸化对黑杨APMP浆的光致返黄和热致返黄的抑制作用并对其机理进行讨论。结果表明①酸化处理能提高APMP浆的白度和白度稳定性。②各种酸对APMP浆的返黄抑制作用不同;试验所用的酸中,草酸最优。  相似文献   
5.
大气氮沉降对森林土壤酸化的影响   总被引:52,自引:0,他引:52  
肖辉林 《林业科学》2001,37(4):111-116
因大气污染而不断增加的大气氮沉降量,在许多地区超过了森林生态系统的氮需求。氮在土壤中的化学和生物化学反应对H^ 离子的产生与消耗有重要影响。NH4^ 和NO3^-输入与输出的平衡状态影响着土壤-土壤溶液系统的酸化速率。过剩的氮沉降将加增NH4^ 的硝化和NO^-的淋失,加速土壤的酸化。土壤酸化对森林有危害作用。  相似文献   
6.
Nitrate (NO3) leaching due to anthropogenic nitrogen (N) deposition is an environmental problem in many parts of the UK uplands, associated with surface water acidification and affecting lake nutrient balances. It is often assumed that gaseous return of deposited N to the atmosphere as N2O through denitrification may provide an important sink for N. This assumption was tested for four moorland catchments (Allt a’Mharcaidh in the Cairngorms, Afon Gwy in mid-Wales, Scoat Tarn in the English Lake District and River Etherow in the southern Pennines), covering gradients of atmospheric N deposition and surface water NO3 leaching, through a combination of field and laboratory experiments. Field measurements of N2O fluxes from static chambers with and without additions of NH4NO3 solution were carried out every 4 weeks over 1 yr. Wetted soil cores from the same field plots were used in experimental laboratory incubations at 5 and 15 °C with and without additions of NH4NO3 solution, followed by measurement of N2O fluxes. Field measurements showed that significant N2O fluxes occurred in only a very small number of plots with most showing zero values for much of the year. The maximum fluxes were 0.24 kg-N/ha/yr from unamended plots at the River Etherow and 0.49 kg-N/ha/yr from plots with NH4NO3 additions at the Allt a’Mharcaidh. Laboratory incubation experiments demonstrated that large N2O fluxes could be induced by warming and NH4NO3 additions, with the top 5 cm of soil cores responsible for the largest fluxes, reaching 11.8 kg-N/ha/yr from a podsol at Scoat Tarn. Acetylene block experiments showed that while N2 was not likely to be a significant denitrification product in these soils, reduced N2O fluxes indicated that nitrification was an important source of N2O in many cases. A simple model of denitrification suggesting that 10-80% of net N inputs may be denitrified from non-agricultural soils was found to greatly over-estimate fluxes in the UK uplands. The proportion of deposition denitrified was found to be much closer to the IPCC suggested value of 1% with an upper limit of 10%. Interception of N deposition by vegetation may greatly reduce the net supply of N from this source, while soil acidification or other factors limiting carbon supply to soil microbes may prevent large denitrification fluxes even where NO3 supply is not limiting.  相似文献   
7.
不同酸性物质对石灰性土壤的酸化效果研究   总被引:3,自引:1,他引:3  
采用室内模拟试验研究了酸性物质对石灰性土壤的酸化效果。结果表明,磷酸能有效地降低石灰性土壤的pH,要使土壤pH由8.89降至6.0左右,最佳酸用量为3.27g/100g土。对于pH较高的石灰性土壤,只用低pH(pH=5.5)的酸水溶液在短时间内降低土壤pH是不切实际的。磷酸二氢铵不仅具有很好的酸化效果,且具有很好的缓冲性能,每100g土壤加入2.3g磷酸二氢铵可使石灰性土壤pH从8.89降低到6.39,并能维持较长的酸性环境。施用5%的硫磺可在30d内使土壤pH降低到7.0~7.5之间。  相似文献   
8.
Changes in vegetation are often caused by changes in abiotic site factors, such as pH, nitrogen availability and soil moisture. It has been recognized that abiotic site factors are affected by atmospheric deposition and groundwater-table changes. In order to evaluate the effects of eutrophication, acidification and desiccation on site factors, the model SMART2 has been developed. For the Netherlands combinations of two acidification and two seepage scenarios (1990–2050) were evaluated with SMART2. The results are focused on pH, nitrogen availability and base saturation. Calculations were made for combinations of five vegetation structures on seven soil types and the five groundwater-table classes, using a 1 km2 grid. Results showed that deposition reductions lead to a relatively fast improvement of the site factors, increase in pH and base saturation and decrease in N availability. Whereas a reduction in groundwater abstractions of 25% has little or no effect on the pH and N availability.  相似文献   
9.

Nitrogen (N) is the only nutrient that promotes forest growth when given individually. An extra stem growth of 15 m 3 ha -1 is obtained during a 10 yr period following an application of 150 kg N ha -1 . Larger growth increases have often been the result of more intensive N fertilization. Lime or wood ash give a minor growth stimulation on sites with a carbon (C) to N ratio below 30 in the humus layer, while the opposite effect prevails on N-poor sites. Nutrients given as soluble fertilizers are readily taken up by trees. Boron deficiency may be induced in northern Sweden after N fertilization or liming. The ground vegetation may be altered by single-shot N fertilization, but long-term effects occur only for intensive regimes. Lime or wood ash may modify the flora if soil pH is significantly altered: the change will be in response to N availability. Fruit-body production of mycorrhizal fungi is disfavoured by chronic N input, but also by lime or ash. However, the mycorrhizal structures on root tips are less affected. Faunistic studies are not common and those present are mostly devoted to soil fauna. A practical N dose of 150 kg N ha -1 has no clear effect, but higher doses may reduce the abundance in some groups. Hardened wood ash does not significantly affect the soil fauna. Lime favours snails and earthworms, while other groups are often disfavoured. The response of aquatic fauna to terrestrial treatments has hardly been studied. N fertilization generally results in insignificant effects on fish and benthic fauna. Lime and wood ash reduce the acidity of the topsoil, but practical doses (2-3 t ha -1 ) are too low to raise the alkalinity of runoff unless outflow areas are treated. N fertilizer use in forestry and N-free fertilizers lack effects on acidification. N fertilization may, however, be strongly acidifying if nitrification is induced and followed by nitrate leaching. N fertilization often results in increased long-term C retention in trees and soil, but does not promote significant N 2 O losses. N may temporarily reduce CH 4 oxidation in soil, but there are indications of a long-term opposite effect. Lime and poorly hardened wood ash may cause losses of C from N-rich soils. Only a few per cent of added N are leached to surface water following practical N fertilization, while N-free fertilizers do not induce N leaching. Soil incubations and soil-water studies suggest an increased risk for nitrate formation and leaching where lime or wood have been added to N-rich soils, but increased leaching to surface water has not been observed. Wood ash causes a temporal increase in bioavailability of cadmium (Cd). Other fertilizers may indirectly increase the availability of heavy metals. Wood ash may contain radioactive caesium 137Cs, but addition of such ash does not increase radioactivity in plants and soil.  相似文献   
10.
全面了解浙江省临安市农地土壤酸化状况,为防治土壤酸化措施的制定提供依据,本研究结合耕地地力调查,系统地分析了全市不同利用类型农地土壤的酸化趋势与酸化特征。调查结果表明:在自然与人为活动的双重影响下,临安市农地土壤酸化十分明显,pH<4.5 的强酸性土壤和pH 4.5~5.4 之间的酸性土壤的比例已分别占23.4%和46.6%,其中以茶树、蚕桑和雷竹产业带土壤的酸为最明显。与1982年调查比较,农地土壤pH普遍呈现下降趋势。分析认为,过量施肥和酸雨是引起该市农地土壤酸化的主要原因。为防控该市农地土壤的进一步酸化,笔者认为除做好合理施肥工作外,应借鉴国内外经验,从推广无机改良技术、有机改良技术、生物修复技术和施用生物质炭等多方面对农地土壤酸化进行控制与改良修复。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号