首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   1篇
基础科学   8篇
  1篇
综合类   4篇
植物保护   1篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2007年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
基于LS-DYNA软件的SPH算法对45号钢的铣削过程进行仿真分析,得出45号钢在切削过程中的变形及切屑的形成过程,控制切削速度、进给速度、切削深度等参数,以求得切削参数对切削力的影响.  相似文献   
2.
基于SPH算法的平面刀土壤切削过程模拟   总被引:6,自引:0,他引:6  
以我国华北一年两熟区保护性耕作地土壤为原型,利用ANSYS/LS_DYNA对平面刀切削土壤过程进行数值模拟,并通过理论分析和试验,验证SPH算法在模拟平面刀切削土壤过程方面的可行性。结合MAT147土壤材料模型,SPH算法及点-面侵蚀接触,运用ANSYS/LS_DYNA软件对平面刀切削土壤过程进行有限元分析。仿真结果表明,SPH算法能够直观模拟平面刀切削土壤整个过程,最大等效应力为5.851 MPa,主要集中在与平面刀接触的土壤上;平面刀切削全过程表明,土壤所受等效应力波动较小,切削过程比较平稳;稳定切削时切削功耗在10.2 kW附近波动,通过理论和试验验证,仿真切削误差不大于0.05。由此说明SPH算法进行平面刀切削过程的数值模拟是可行的。  相似文献   
3.
为探明深松铲土壤切削过程中切削阻力的变化规律和了解深松铲切削土壤过程情况,基于SPH方法建立了深松铲土壤深松的有限元模型,并对其深松过程进行仿真分析。仿真结果表明:SPH法能够直观地模拟深松铲土壤切削完整过程,最大等效应力为3. 184MPa,主要集中在与深松铲接触土壤上,仿真切削阻力为3.65 k N。通过耕整地移动式田间动态试验台进行田间试验验证,得出切削阻力为3. 542 k N,与仿真结果相比误差仅为3. 05%,验证了基于SPH法进行深松铲切削土壤过程的仿真是可行的。  相似文献   
4.
应用光滑粒子流体动力学(SPH)理论以及有限单元理论,结合相关软件,研发了基于SPH的土壤高速切削仿真系统。以潜土逆转旋耕为例,应用该系统虚拟定量地研究了土壤高速切削过程,以揭示土壤-机器系统的作用机理。并且通过高速摄影试验验证了仿真系统的正确性。该系统的开发对于耕作机具(如各式旋转耕耘机和犁)的改进和创新设计有重要意义。  相似文献   
5.
为明确ⅠT245型旋耕刀(刀座式)切割重黏土过程,基于光滑粒子流体动力学(SPH)方法对旋耕刀–土壤进行建模,运用ANSYS/LS–DYNA软件进行仿真,分析单个旋耕刀在刀盘转速200 r/min、机具前进速度0.6 m/s、耕深0.12m工况下的切土扭矩情况,仿真平均扭矩为5.84N·m,以库伦定理和朗肯土压力理论为依据计算的理论平均扭矩为6.42N·m,二者误差为8.98%。分别使用理论方法和有限元方法,以机具前进速度、刀盘转速和耕深为影响因素,以比功为评价指标,进行正交旋转组合试验,得到旋耕比功与机具前进速度、刀盘转速及耕深的回归方程,表明在符合农艺要求的情况下,应尽可能选择较大的机具前进速度和耕深,较小的刀盘转速。  相似文献   
6.
玉米分层正位穴施肥精播机SPH仿真与试验   总被引:1,自引:0,他引:1  
为了有效地将化肥集中施在玉米植株下方根系生长的区域内,以减少化肥用量,设计了一种玉米分层正位穴施肥精播机。在对穴施肥精播机进行实体建模的基础上,结合MAT147土壤材料模型与SPH(光滑粒子流体动力学)算法,运用LS-DYNA模拟并分析了穴施肥系统的间歇排肥机构的落肥状态,以及分层排肥管将化肥施入土壤之后的分布情况。通过土槽和田间试验验证,表明分层正位穴施肥精播机能够精确地将所需化肥按预定比例施入不同深度土层中,化肥分布于种子正下方深度为7~23 cm的土层内,化肥集中在最深施肥层中,并且化肥分布由深至浅依次递减,符合玉米生长过程中的实际需肥规律。  相似文献   
7.
叶轮是船式拖拉机独特的行走驱动装置,其设计参数对驱动性能和作业效率具有很大影响。为此,以课题组前期研发的HH709S型船式拖拉机叶轮为研究对象,采用光滑粒子流体动力学法,建立了轮叶-土壤的动力学仿真模型,并在此基础上对单轮叶与土壤的作业过程进行了分析。通过分析不同结构参数下单轮叶推进力做功及驱动效率的变化规律,为轮叶结构参数优化设计提供依据。研究结果表明:单轮叶结构优化后最大支撑力减小了3.83%,最大推进力提升了9.66%,推进力做功提升了13.72%,驱动效率提升了20. 35%,驱动性能得到了显著提高。  相似文献   
8.
王雷  廖毅  汪凌  汪丛 《农机化研究》2021,43(1):23-26,45
针对不同种类水田土壤承压模型的差异性等问题,提出一种武汉黄棕壤水田土壤承压模型的建立方法。依据黄棕壤水田土壤力学特性设计了3种面积不同的测板,基于光滑粒子流体动力学(SPH)算法构建了测板-水田分层土壤SPH动力学模型,研究了测板的贯入深度与时间、承压力之间的关系,并进行了田间试验。结果表明:测板面积S=9.95cm 2的模拟贯入土壤结果与田间试验结果高度吻合,表明该仿真方法对建立水田土壤承压模型可行,能客观反映出黄棕壤水田土壤的承压特性。  相似文献   
9.
王雷  廖毅  汪丛  汪凌 《农机化研究》2021,43(4):33-36,41
测板是水田土壤承压特性测量设备监测土壤特性的特有装置,其设计参数对测量范围和准确度具有很大影响。为此,设计了一种水田土壤承压特性测量设备,采用光滑粒子流体动力学(SPH)算法构建了导轨-水田分层土壤SPH动力学模型,并在此基础上对面积相同、形状不同的4种测板在土壤作业过程中的作用进行了分析。研究结果表明:各种测板的水田土壤承压-下陷曲线不同;在承压相同的条件下,圆形测板贯入深度最大;4种测板贯入深度相等时,圆形测板承压力最小;使用圆形测板进行测量时,范围更大,速度更快。  相似文献   
10.
为明确玉米根茬根土分离过程中的土壤运动与破裂规律以及根茬变形与受力规律,基于光滑粒子流体动力学(SPH)算法构建玉米根茬根土复合体仿真模型,利用该模型分别进行了玉米根茬根土复合体在压力与冲击作用下的根土分离过程动态仿真。仿真结果表明:在压缩作用下,为使土壤破碎同时避免压实,应控制压缩率90%;当压缩率为90%时,玉米根茬大部分根须所受等效应力为0.421~2.907 MPa;采用飞锤冲击玉米根茬根土复合体,不仅可以有效促使土壤破碎,提高根土分离效果,而且可以减少根须所受应力,降低根茬损失率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号