首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
基础科学   1篇
  2007年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
In the Sahel region of West Africa, the traditional organization of the population and the grazing land avoided overexploitation of pastures. Since independence in the 1960s, grazing lands have been opened to all without specific guidance, and the vulnerability of the pastures to degradation has increased. Rotational grazing is postulated as a possible solution to provide higher pasture productivity, higher animal loads per unit land, and perhaps improved soil carbon storage. The objective of this study was to conduct a simulation-based assessment of the impact of rotational grazing management on pasture biomass production, grazing efficiency, animal grazing requirement satisfaction, and soil carbon storage in the Madiama Commune, Mali. The results showed that grazing intensity is the primary factor influencing the productivity of annual pastures and their capacity to provide for animal grazing requirements. Rotating the animals in paddocks is a positive practice for pasture protection that showed advantage as the grazing pressure increased. Increasing the size of the reserve biomass not available for grazing, which triggers the decision of taking the animals off the field, provided better pasture protection but reduced animal grazing requirements satisfaction. In terms of soil carbon storage, all management scenarios led to reduction of soil carbon at the end of the 50-year simulation periods, ranging between 4% and 5% of the initial storage. The differences in reduction as a function of grazing intensity were of no practical significance in these soils with very low organic matter content, mostly resistant to decomposition.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号