首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   10篇
  国内免费   9篇
林业   2篇
农学   19篇
基础科学   2篇
  26篇
综合类   18篇
农作物   16篇
畜牧兽医   2篇
植物保护   3篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   5篇
  2014年   5篇
  2013年   9篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1992年   2篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
1.
Under Mediterranean conditions, drought affects cereals production principally through a limitation of grain filling. In this study, the respective role of post‐anthesis photosynthesis and carbon remobilization and the contribution of flag leaf, stem, chaff and awns to grain filling were evaluated under Mediterranean conditions in durum wheat (Triticum turgidum var. durum) cultivars. For the purpose, we examined the effects of shading and excision of different parts of the plant and compared carbon isotope discrimination (Δ) in dry matter of flag leaf, stem, chaff, awns and grain at maturity and in sap of stem, flag leaf, chaff and awns, this last measurement providing information on photosynthesis during a short period preceding sampling. Source–sink manipulations and isotopic imprints of different organs on final isotope composition of the grain confirmed the high contribution of both carbons assimilated by ears and remobilized from stems to grain filling, and the relatively low contribution of leaves to grain filling. Grain Δ was highly and significantly associated with grain yield across treatments, suggesting the utilization of this trait as an indicator of source–sink manipulations effects on grain yield. Chaff and awns Δ were better correlated with grain Δ than stem and leaf Δ, indicating that chaff were more involved in grain filling than other organs. Moreover, in chaff, sap Δ was highly significantly correlated with dry matter Δ. These results suggest the use of Δ for a rapid and non‐destructive estimation of the variation in the contribution of different organs to grain filling.  相似文献   
2.
Vertical distribution of nitrogen in wheat canopy, nitrogen remobilization and their influence on grain quality of winter wheat were studied. Two winter wheat cultivars, Jingdong8, a common cultivar, and Zhongyou9507, a high quality cultivar, were selected. Leaf nitrogen showed an obvious decreasing trend from the canopy top to the ground surface for all treatments in growth duration. There was no apparent vertical nitrogen gradient in stem and sheath of Zhongyou9507 compared with Jingdong8. Zhongyou9507 had more nitrogen remobilization from leaf, stem and sheath than Jingdong8 from middle grain filling to waxening, especially the nitrogen remobilization amount in stem and sheath, which was higher than that in Jingdong8 during growth duration. Higher vertical nitrogen gradients in Jingdong8 at anthesis had disadvantages on its grain quality. But higher vertical nitrogen gradients between middle and lower layers of Jingdong8 at grain filling stage enhanced its grain quality. Higher vertical nitrogen gradients in upper layer at anthesis and upper layer leaf and middle layer stem and sheath at grain filling stage had advantages on protein accumulation in grain of Zhongyou9507. There were positive correlations between foliar nitrogen remobilization amount and grain quality at later growth stage for the two cultivars. There was a positive correlation between quality of Jingdong8 and stem and sheath nitrogen remobilization amount from anthesis to early grain filling, and that of Zhongyou9507 emerged from anthesis to early grain filling and from middle grain filling to waxening. Contribution of leaf nitrogen to the quality of Jingdong8 was larger than nitrogen from stem and sheath. High protein content of Zhongyou9507 was attributed to the nitrogen condition in its leaf, stem and sheath. Nitrogen in stem and sheath played a more important role on the grain quality of Zhongyou9507 than on that of Jingdong8.  相似文献   
3.
结实期土壤水分与氮素营养对水稻产量与米质的影响   总被引:21,自引:1,他引:21  
以汕优63和武育粳3号为材料,研究结实期水分胁迫和氮素营养对水稻产量和米质的影响。结果表明:水分胁迫处理的叶片水势在白天明显低于对照(非胁迫处理),但早晨和傍晚的叶片水势在2种处理间无明显差异,说明胁迫处理植株的叶片水势在晚间得到恢复。水分胁迫处理叶片的叶绿素含量和光合速率明显降低,植株衰老加快,而抽穗期施用氮肥处理植株衰老延缓。水分胁迫处理促进了茎鞘储存的非结构性碳水化合物(可溶性糖和淀粉)的输出。产量以及大多数米质指标在土壤水分胁迫与非胁迫处理澡无明显差异,抽穗期施用氮肥可显著提高产量。  相似文献   
4.
The export of nitrogen (N) from senescent plant parts is important for the efficient use of this macronutrient. The objective of this study was to establish correlations among the photosynthetic pigment content, total N, and the photosynthetic variables with the SPAD‐502 readings in Coffea arabica leaves. Correlations were established among the chlorophyll content, N content, and chlorophyll a and b with SPAD‐502 readings taken on coffee leaves at different months. The results show that all variables decreased with time. However, correlation increased linearly with N doses. Total chlorophyll presented a direct linear correlation with readings of the portable chlorophyll meter. The SPAD readings have shown to be a good tool to diagnose the integrity of the photosynthetic system in coffee leaves. Thus, the portable chlorophyll SPAD‐502 instrument can be used to evaluate the N status and can also help to evaluate the photosynthetic process in coffee plants.  相似文献   
5.
When wheat (Triticum aestivum L.) is grown under heat-stress conditions during grain filling, preanthesis stored total non-structural carbohydrates (TNC) and nitrogen (N) could serve as alternative source of assimilates. This study was performed to evaluate wheat genotypes for their ability to accumulate and remobilize TNC and N stored in their stem to support grain filling under heat stress. Eighteen genotypes were used for N remobilization study while nine of them were used for TNC remobilization study. They were grown in pots and placed in a vinyl house with the maximum temperature kept below 30 °C. Five days after anthesis (5DAA), half of the pots were taken to phytotrons where temperature was gradually increased and the maximum was set at 38 °C. Grain yield and grain weight decreased by about 35 % under heat stress. Significant differences were found among genotypes in percentage reduction in grain yield, grain weight, grain filling duration and harvest index because of heat stress. The N and TNC concentrations of the stem at 5DAA were significantly different among genotypes. Heat stress significantly reduced the N remobilization efficiency of most of genotypes. However, heat stress significantly increased TNC remobilization efficiency and significant variation were observed among genotypes. N remobilization efficiency across treatments significantly correlated with grain yield, grain weight, harvest index and grain filling duration. TNC at 5DAA negatively correlated with N at 5DAA and harvest index, but the TNC remobilization efficiency under heat stress positively correlated with mainstem grain yield, grain weight and harvest index. The rate of chlorophyll loss from flag leaf positively correlated with N and TNC remobilization efficiencies under heat stress suggesting a link between leaf senescence and remobilization efficiency. The results indicate that heat stress negatively affected grain yield, its components and N remobilization while it increased TNC remobilization because of the increasing demand for resources.  相似文献   
6.
旱种水稻结实期茎中碳同化物的运转及其生理机制   总被引:12,自引:0,他引:12  
以杂交水稻汕优63和籼稻扬稻6号为材料,研究了旱种(地膜覆盖栽培)水稻结实期茎中碳同化物的运转及其生理机制。结果表明,抽穗至成熟期旱种水稻标记14C从茎中向籽粒的再分配、茎中非结构性碳水化合物(NSC)的运转率及其对籽粒的贡献率均显著高于水种(常规栽培)水稻。水稻旱种后籽粒中的蔗糖合成酶和酸性转化酶活性、茎中α-淀  相似文献   
7.
Summary The common bean (Phaseolus vulgaris L.) is generally regarded as a poor N2 fixer. This study assessed the sources of N (fertilizer, soil, and fixed N), N partitioning and mobilization, and soil N balance under field conditions in an indeterminate-type climbing bean (P. vulgaris L. cv. Cipro) at the vegetative, early pod-filling, and physiological maturity stages, using the A-value approach. This involved the application of 10 and 100 kg N ha-1 of 15N-labelled ammonium sulphate to the climbing bean and a reference crop, maize (Zea mays L.). At the late pod-filling stage (75 days after planting) the climbing bean had accumulated 119 kg N ha-1, 84% being derived from fixation, 16% from soil, and only 0.2% from the 15N fertilizer. N2 fixation was generally high at all stages of plant growth, but the maximum fixation (74% of the total N2 fixed) occurred during the interval between early (55 days after planting) and late podfilling. The N2 fixed between 55 and 75 days after planting bas a major source (88%) of the N demand of the developing pod, and only about 11% was contributed from the soil. There was essentially no mobilization of N from the shoots or roots for pod development. The cultivation of common bean cultivars that maintain a high N2-fixing capacity especially during pod filling, satisfying almost all the N needs of the developing pod and thus requiring little or no mobilization of N from the shoots for pod development, may lead to a net positive soil N balance.  相似文献   
8.
Synthetic chelating agents such as EDTA form strong complexes with heavy metals and therefore have the potential to remobilize metals from sediments and aquifers. In natural waters EDTA is present almost exclusively in the form of metal-complexes. Therefore, remobilization of metals is always a metal-metal-EDTA exchange reaction. We have investigated, to our knowledge for the first time, the remobilization of metals from the surface of synthetic iron oxides and from a river sediment by different metal-EDTA complexes. The metals are exchanged as follows:MeEDTAdissolved + Meast adsorbed MeastEDTAdissolved + Meadsorbed The order of the remobilization rate of Zn2+ from goethite is CaEDTA > Fe(III)EDTA, reflecting the slow exchange reaction of Fe(III)EDTA. For the remobilization of Pb2+ from goethite, the rate was found to be Fe(III)EDTA > CaEDTA > ZnEDTA. Here, Fe(III)EDTA has surprisingly the fastest exchange rate. Only very limited remobilization of Pb2+ is possible from hydrous ferric oxide at pH 8 due to the very strong adsorption of Pb2+. The order of remobilization of Zn2+ from a natural river sediment was found to be CaEDTA > CuEDTA > Fe(III)EDTA. The remobilization rate of Zn2+ with Fe(III)EDTA is only 12% of the rate with CaEDTA, illustrating the importance of EDTA speciation for assessing remobilization.  相似文献   
9.
通过测定不同施N条件下油菜各器官的N素含量,研究了油菜后期根、茎枝、叶片等营养器官中N素的 输出和角果中N素的积累。其主要结果如下: (1)根、茎枝、叶片中N素积累量的变化呈先增后减的趋势,一般在 开花期前后达最大值;角果中N素总量随角果的生长逐渐增加。增施N肥明显增加各器官的N素积累量,推迟最 大值出现的时间。(2)根系、茎枝、叶片中的N素向外输出的比例随施N量的增加而下降,分别占其最大值的20% ~35%、35%~65%、55%~70%。(3)角果中的N素有30%左右来自叶片中N素的再利用,受施肥量的变化影响 较小; 35% ~10%来自茎枝的N素的再利用,随施N量的增加而减少;来自根系中N素的再利用不足5%;来自开 花后从土壤中吸收的N素约为30% ~60% ,随施N量的增加而增加。  相似文献   
10.
A 2-year field experiment using a randomized complete block design with the treatments arranged as split-split-plot with three replicates was conducted to investigate the effects of different sowing dates. Different irrigation regimes and different triticale cultivars were tested during 2014 and 2015 growing seasons. Under cutting off irrigation at the milk development stage, Sanabad with 46.2% had higher relative water content on December 3 sowing date. Assimilate remobilization in cutting off irrigation at dough development was more than that at milk development and Sanabad had the highest assimilate remobilization on 3 December sowing date in both years. In both years, Sanabad had the highest remobilization efficiency. The highest contribution of pre-anthesis assimilates to grain was obtained on 3 December sowing date in both years in Sanabad. Lower grain yield in Juanillo cultivar under cutting off irrigation, appeared to be due to reduction in remobilization efficiency, especially by cutting off irrigation at milk development stage in late sowing date. Overall, Sanabad was more tolerant to cutting off irrigation than Juanillo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号