首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
农学   13篇
综合类   2篇
农作物   7篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1982年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
2.
Low molecular weight glutenin subunits (LMW-GS) encoded by the Glu-3 loci are known to contribute to wheat breadmaking quality. However, the specific effect of individual Glu-3 alleles is not well understood due to their complex protein banding patterns in SDS-PAGE and tight linkage with gliadins at the Gli-1 locus. Using DNA markers and a backcross program, we developed a set of nine near isogenic lines (NILs) including different Glu-A3/Gli-A1 or Glu-B3/Gli-B1 alleles in the genetic background of the Argentine variety ProINTA Imperial. The nine NILs and the control were evaluated in three different field trials in Argentina. Significant genotype-by-environment interactions were detected for most quality parameters indicating that the effects of the Glu-3/Gli-1 alleles are modulated by environmental differences. None of the NILs showed differences in total flour protein content, but relative changes in the abundance of particular classes of proteins cannot be ruled out. On average, the Glu-A3f, Glu-B3b, Glu-B3g and Glu-B3iMan alleles were associated with the highest values in gluten strength-related parameters, while Glu-A3e, Glu-B3a and Glu-B3iChu were consistently associated with weak gluten and low quality values. The value of different Glu-3/Gli-1 allele combinations to improve breadmaking quality is discussed.  相似文献   
3.
An assessment of cultivated emmer germplasm for gluten proteins   总被引:5,自引:0,他引:5  
The storage protein composition of 61 accessions of Triticum dicoccum was analyzed by SDS-PAGE (HMW- and LMW-glutenin subunits) and Acid-PAGE (gliadins). In the HMW-glutenin subunits, four allelic variants at the Glu-A1 and eight at the Glu-B1 locus were detected resulting in a total of 17 patterns. The Glu-B1 locus was found to be more polymorphic than the Glu-A1 locus. Interestingly, the presence of HMW subunits like 13+16, 2 and 1 associated with good quality was observed. Three accessions were null for both the Glu-A1 and Glu-B1 loci. There was less variation for gliadins. Three different gamma gliadin fractions coded by Gli-B1 locus were detected and there were eight different LMW-B glutenin patterns at the Glu-3 loci. The variability can be used to improve the utility of this crop.  相似文献   
4.
The wheat storage proteins account for up to about 60% of the totalgrain proteins. They correspond to the gluten proteins, which form avisco-elastic network that enables dough to be processed into bread, pastaand other products. We are using a range of biochemical, biophysical andmolecular approaches to characterize gluten proteins and to understandtheir role in determining the grain processing properties, focusing on thehigh molecular weight (HMW) subunits of glutenin which are majordeterminants of dough strength. We are also using genetic engineering toexplore the mechanism of glutenin elasticity and to effect improvements,by inserting genes encoding mutant and wild type HMW subunits intomodel lines and commercial cultivars.  相似文献   
5.
This paper reviews our present knowledge of the chromosomal location of the genes that control the synthesis of gliadins and glutenins, the two major groups of storage protein in the endosperm of wheat (Triticum aestivum). Allelic relationships and genetic linkage between genes are also discussed. The areas that require futher investigation are identified.  相似文献   
6.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment.  相似文献   
7.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   
8.
Multiplex-PCR typing of high molecular weight glutenin alleles in wheat   总被引:26,自引:0,他引:26  
W. Ma  W. Zhang  K.R. Gale 《Euphytica》2003,134(1):51-60
In Australian commercial cultivars, each high molecular weight glutenin (Glu-1) homoeologous locus consists of one of two predominant alleles: Glu-A1a (subunit Ax1) or Glu-A1b (subunit Ax2*) at the GluA1 locus, Glu-B1b (Bx7 and By8 subunits) or Glu-B1i (Bx17 and By18 subunits) at the Glu-B1 locus, and Glu-D1d (Dx5 and Dy10 subunits) or Glu-D1a (Dx2 and Dy12 subunits) at the Glu-D1 locus. PCR-based assays have been developed in this study to discriminate between these common alleles at each locus. Primers specific for the Glu-A1 Ax2* gene give a single fragment of 1319 bp only in the presence of this gene. Primers targeting the Glu-B1 locus resulted in a co-dominant marker for which the Bx7 genotype produced two fragments (630 bp and 766 bp) and the Bx17 genotype a single fragment (669 bp). The third pair of primers was specific for the Dx5 gene and resulted in a single band of 478 bp. A multiplexed PCR assay was established which permitted the discrimination of the major HMW glutenins in a single PCR reaction and agarose gel assay. As the HMW glutenin composition of a wheat line is extremely important in determining the functional properties of wheat gluten, these markers are useful for the purposes of marker-assisted breeding. These markers may also be useful for the purpose of DNA-based identification of wheat varieties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
The high molecular weight (HMW) and B‐zone low molecular weight (B‐LMW) glutenin subunit composition of 45 Algerian durum wheat (Triticum turgidum L. var. durum) landraces and old cultivars were examined by sodium‐dodecyl‐sulphate polyacrylamide gel electrophoresis (SDS‐PAGE). Nine accessions were heterogeneous and presented two or three genotypes. All together, 33 glutenin patterns were detected, including 12 for HMW and 15 for B‐LMW glutenin subunits. Twenty‐four different alleles were identified for the five glutenin loci studied, Glu‐A1 (3), Glu‐B1 (6), Glu‐A3 (8), Glu‐B3 (5) and Glu‐B2 (2). Five new alleles were found, three at Glu‐A3 and two at Glu‐B3. At the Glu‐1 loci, the Glu‐A1c‐Glu‐B1e allelic composition was predominant (31%). For the B‐LMW glutenins, the most common allelic composition was Glu‐A3a‐Glu‐B3a‐Glu‐B2a (36%). The collection analysed shows a high percentage of glutenin alleles and allele combinations related to high gluten strength, together with some others that have not been tested so far. This information could be useful to select local varieties with improved quality and also as a source of genes to develop new lines when breeding for quality.  相似文献   
10.
A number of resistance sources for the Russian wheat aphid have been reported in the last few years and were used to develop resistant cultivars from current commercial cultivars in various breeding programmes. It can be diffcult to distinguish between the cultivars with and without resistance without actual infestation and so in this study we looked at low molecular weight glutenin subunits (LMW-GS) of the two groups. Distinctly different banding patterns were found for the cultivars tested and their isogenic counterparts. Although the LMW-GS and DN1 and DN5 are coded on different chromosomes, the LMW-GS are highly repeatable and banding profiles of each cultivar can be used for the identification of unknown seed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号