首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   8篇
  国内免费   10篇
林业   26篇
农学   8篇
基础科学   12篇
  105篇
综合类   57篇
农作物   5篇
水产渔业   2篇
畜牧兽医   7篇
园艺   1篇
植物保护   9篇
  2024年   2篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2020年   7篇
  2019年   12篇
  2018年   1篇
  2017年   13篇
  2016年   13篇
  2015年   5篇
  2014年   9篇
  2013年   12篇
  2012年   18篇
  2011年   14篇
  2010年   9篇
  2009年   9篇
  2008年   15篇
  2007年   7篇
  2006年   7篇
  2005年   9篇
  2004年   7篇
  2003年   8篇
  2002年   4篇
  2001年   8篇
  1999年   1篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
排序方式: 共有232条查询结果,搜索用时 109 毫秒
1.
[Objective]The aim was to explore the feasibility of applying oyster shell soil amendment for tomato production in order to determine proper quantity of the soil conditional.[Method]Field tests were performed to research effects of the soil conditioner on tomato yield,quality and soil p H.[Result]The results showed that tomato yield increased in the treatment groups with oyster shell soil amendment.The group SC50 increased the most by 16.5%than the control group.Based on normal fertilization,tomato growth was promoted by the soil amendment,and per tomato weight and lycopene content both improved during peak-fruiting period.Besides,soil p H value was enhanced by the soil amendment also.[Conclusion]It can be concluded that the effect was the best when soil conditioner was applied at 750 kg/hm2.  相似文献   
2.
不同改良措施对设施蔬菜土壤肥力和番茄品质的影响   总被引:2,自引:1,他引:1  
为探明不同改良措施对设施蔬菜土壤及番茄果实品质的影响,该研究以陕西省太白县秦西蔬菜种植示范园大棚为研究试点,选取草木灰、生物炭、EM菌(Effective Microorganisms)3种改良剂,设置了EM菌(E)、生物炭(S)、生物炭+EM菌(SE)、草木灰(C)、草木灰+生物炭(CS)、草木灰+生物炭+EM菌(CSE)和不施加任何改良剂的空白对照(CK)7个处理。结果表明:各处理均能改善土壤理化性质,其中草木灰+生物炭+EM菌(CSE)处理在提高土壤pH值、有机质、全氮、碱解氮、全磷、速效磷、全钾及速效钾含量方面效果最显著,与CK处理相比,分别提高了23.06%、130.94%、44.34%、52.78%、67.72%、126.71%、16.24%、119.48%;与CK处理相比,各种配施改良剂处理的植株全氮含量显著高于单施改良剂处理,草木灰+生物炭+EM菌(CSE)处理最显著,提高了25.17%;各处理的植株全磷含量较CK处理均显著增加,草木灰+生物炭+EM菌(CSE)处理效果最明显,且草木灰+生物炭+EM菌(CSE)处理是CK处理的2.09倍;除EM菌(E)处理外,其他5个处理均能显著提高植株全钾含量,草木灰+生物炭+EM菌(CSE)处理效果最显著,且草木灰+生物炭+EM菌(CSE)处理是CK处理的1.44倍;但6个处理均对植株灰分无显著影响;与CK处理相比,草木灰+生物炭+EM菌(CSE)处理的糖酸比最高,达69.23%;与CK处理相比,各处理的土壤综合肥力指数均显著提高,而草木灰+生物炭+EM菌(CSE)处理效果最显著;通过对各处理的综合得分均值进行比较,草木灰+生物炭+EM菌(CSE)处理得分最高。综合分析得出,施加草木灰+生物炭+EM菌能有效改善太白县高山设施蔬菜种植土壤的酸化、肥力等,提高西红柿的品质。  相似文献   
3.
通过对黄河三角洲地区棉田、果园、林地和荒地4种不同土地利用方式下土壤样品的采集与理化指标的分析,研究了该区域不同土地利用方式对轻度盐渍化土壤的改良功能。结果显示:果园土壤的容重、pH值和全盐含量等物理性状要优于其它3种用地方式;棉田土壤有机质与全N、全P和全K含量超过果园与林地土壤,而速效N和速效P含量以果园土壤最高,速效K含量以棉田最高,果园土壤最低;果园土壤C/N比值明显高于其它3种用地方式,以荒地土壤的C/N比值最低。综合分析认为:种植果树对土壤的物理性状改良效果较好,种植棉花对土壤的化学性状具有较好的改良效果。  相似文献   
4.
Our contemporary society is struggling with soil degradation due to overuse and climate change. Pre‐Columbian people left behind sustainably fertile soils rich in organic matter and nutrients well known as terra preta (de Indio) by adding charred residues (biochar) together with organic and inorganic wastes such as excrements and household garbage being a model for sustainable agriculture today. This is the reason why new studies on biochar effects on ecosystem services rapidly emerge. Beneficial effects of biochar amendment on plant growth, soil nutrient content, and C storage were repeatedly observed although a number of negative effects were reported, too. In addition, there is no consensus on benefits of biochar when combined with fertilizers. Therefore, the objective of this study was to test whether biochar effects on soil quality and plant growth could be improved by addition of mineral and organic fertilizers. For this purpose, two growth periods of oat (Avena sativa L.) were studied under tropical conditions (26°C and 2600 mm annual rainfall) on an infertile sandy soil in the greenhouse in fivefold replication. Treatments comprised control (only water), mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), compost (5% by weight), biochar (5% by weight), and combinations of biochar (5% by weight) plus mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), and biochar (2.5% by weight) plus compost (2.5% by weight). Pure compost application showed highest yield during the two growth periods, followed by the biochar + compost mixture. biochar addition to mineral fertilizer significantly increased plant growth compared to mineral fertilizer alone. During the second growth period, plant yields were significantly smaller compared to the first growth period. biochar and compost additions significantly increased total organic C content during the two growth periods. Cation‐exchange capacity (CEC) could not be increased upon biochar addition while base saturation (BS) was significantly increased due to ash addition with biochar. On the other hand, compost addition significantly increased CEC. Biochar addition significantly increased soil pH but pH value was generally lower during the second growth period probably due to leaching of base cations. Biochar addition did not reduce ammonium, nitrate, and phosphate leaching during the experiment but it reduced nitrification. The overall plant growth and soil fertility decreased in the order compost > biochar + compost > mineral fertilizer + biochar > mineral fertilizer > control. Further experiments should optimize biochar–organic fertilizer systems.  相似文献   
5.
生物质灰对红壤酸度的改良效果   总被引:2,自引:0,他引:2  
时仁勇  李九玉  徐仁扣  钱薇 《土壤学报》2015,52(5):1088-1095
用采自安徽、浙江、湖南和广东的4种红壤和1种赤红壤,通过室内培养实验研究了添加生物质灰对酸性土壤的改良效果。结果表明,添加生物质灰提高了土壤p H,降低了土壤交换性铝含量,且阳离子交换量(CEC)越小改良效果越明显。改良后土壤交换性K+、Ca2+、Mg2+含量也显著增加,交换性Ca2+增幅最大,其次为交换性K+。有效磷含量也有增加,磷含量较高的土壤有效磷增幅更大。虽然生物质灰含有一定量的重金属,但由于用量较少,对土壤有效态重金属含量的影响小,施用生物质灰的环境风险较小。总之,添加生物质灰不仅可以有效改良红壤酸度,还可提高红壤肥力。  相似文献   
6.
植物纤维毯道路边坡防护技术综合效益评价   总被引:1,自引:2,他引:1  
为系统评价植物纤维毯水土保持作用对不同雨强的响应以及改良土壤的作用,开展了人工模拟降雨试验和野外小区监测,在模拟降雨试验中,设计4个雨强,测试3种植物纤维毯,降雨历时均为60min。在降雨过程中以5min为间隔收集径流泥沙,并测定径流量和侵蚀泥沙量。在野外小区监测中,通过2007,2010,2013年施工的稻草毯小区,以及2014年施工的椰丝毯、椰丝稻草混合毯和稻草毯小区,评价土壤理化性质对植物纤维毯铺设年限和类型的响应差异。结果表明:在47mm/h及以上雨强下,椰丝毯、椰丝稻草混合毯和稻草毯均能有效减少侵蚀和产流,平均减蚀效益分别为94.92%,86.06%,83.42%,平均减流效益分别为31.59%,45.02%,52.44%,减蚀效益显著优于减流效益。3种植物纤维毯均在47mm/h雨强下减蚀效益和减流效益达到最高,其中最高减蚀效益为椰丝毯(97.54%),最高减流效益为椰丝稻草混合毯(88.26%)。随着雨强增大,减蚀效益和减流效益均不同程度降低,且减流效益降低更快。随着植物纤维毯铺设年限延长,土壤理化性质逐渐改善;铺设1年后,椰丝稻草混合毯改土效果最佳。  相似文献   
7.
The development of appropriate technologies for the judicious use of India's 8.11 million ha of salt-affected lands would give increased food, fodder and fuelwood production. A sizeable portion of the salt-affected lands of the Indo-Gangetic plain have been reclaimed through chemical amendments and are being commercially used for arable farming. However, large areas of salt-affected common lands, village and government lands and waste lands near cities, along railway tracks and roads do not have any productive use. Owing to their sparse vegetative cover such lands are vulnerable to further degradation and can be a source of runoff causing floods, especially where cows congregate. Research at the Central Soil Salinity Research Institute, Karnal has generated agroforestry techniques which could enable the economic exploitation of such marginal lands. This paper deals with various aspects of these techniques, which have been applied to over 50 000 ha by 1994. Based on eight to ten years of growth and biomass figures, the most salt-tolerant woody species identified were: Prosopis juliflora, Acacia nilotica, Casuarina equisetifolia, Tamarix articulata, Leptochloa fusca (a palatable forage grass which was found to be a promising primary colonizer of salt lands). Agronomic practices for the successful establishment of trees such as planting methods, amendment use, irrigation, spacing and lopping schedules are discussed. A Prosopis juliflora-leptochloa fusca silvipastoral model was found to be excellent for fuelwood and forage production and for the amelioration of high pH soils. This system, when followed for little more than four years, reclaims alkali soils to such an extent that normal agriculture crops such as Trifolium alexandrinum and T. resupinatum can be grown successfully. A ridge-trench system of tree planting was found to be helpful in alkali soils, the in situ rainwater conservation it led to assisting biomass production. Eucalyptus tereticornis, Populus deltoides and Tectona grandis based agroforestry were promising for reclaimed salt-affected lands. The short- and long-term effects of various tree plantations on the physicochemical properties of the soil and on soil-water relations are also discussed. Agroforestry options for the development of salt-affected lands found in various agroclimatic zones of India are explored.  相似文献   
8.
This paper examines soil amelioration by planting 15 leguminous and graminaceous plant species, including herbaceous annuals, perennials and biennials, and woody perennials and biennials. Disturbed and undisturbed natural regrowth were planted with leguminous species, in some cases with fertilizer applied at planting (400 kg ha−1 of 15:15:15 NPK). The studies were made on two highly degraded sites in southwestern Nigeria which had been subjected to intensive mechanized cropping for a period of 10 years. Changes in soil physical and chemical properties were monitored from 1989 to 1991. Acacia difficilis, Brachiaria lata and Mucuna utilis had the lowest survival rates by the following growing season. Soil fertility and compaction levels differed between sites. Planting had no effect on the latter. The decreases in compaction (i.e. macroporosity) between 0.00 and 0.10 m depth at both sites one month before and five and 17 months after planting were 43, 59 and 61 per cent, respectively were attributed to exclusion of heavy machinery from the sites. Large decreases in fertility occurred at both sites and were attributed to a combination of nutrient extraction and to leaching. Between fallow species, exchangeable Ca, pH and the cation-exchange capacity (CEC) were greater and total acids lower for herbaceous cover compared with woody perennials, and was attributed to a higher Ca demand by the latter. Highest and lowest values of Ca, CEC and pH occurred in plots where plant material was returned to the soil (i.e. by cutting or die-back) and in cropped plots, respectively. Natural regrowth was as effective or better than planted species in improving soil physical and chemical properties. Therefore the use of exotic plant species for ameliorating highly degraded alfisols is unnecessary. Amelioration of highly degraded alfisols may be best effected by allowing natural regrowth to occur while excluding all mechanized traffic from the site.  相似文献   
9.
针对近年来羊草草地利用不合理,载畜量过大,出现不同程度退化和盐碱化的问题。为改善草地植物生存条件,对退化、盐碱化草地进行了种草改良试验研究。结果表明,种植4种牧草后均改善了土壤养分状况,均增加土壤中的氮、磷和钾,其中敖汉苜蓿效果最佳,总氮和速效氮含量分别增加0.50%和31.91mg/kg,土壤中全磷和速效磷含量分别增加0.252%和11.33mg/kg,土壤中速效钾含量增加24.37mg/kg。含盐量和pH均有不同程度降低,最佳是碱茅,含盐量和pH分别下降0.058和0.9,其次为军需1号野大麦,含盐量和pH分别下降0.04和0.74。适应性强,抗旱、抗寒、耐盐碱,产量高、品质好。  相似文献   
10.
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (< 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (< 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (< 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号