首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
林业   5篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Woodpeckers (family Picidae) merit specific monitoring and management efforts, both as keystone/facilitator species and as indicators of forest condition. Recent studies indicated that species richness of woodpeckers was correlated with richness of all forest birds, thus suggesting potential exists for management practices that can address needs of woodpeckers in particular and other forest birds in general. We used data from a long-term study (1995–2008) from forest sites in the interior of British Columbia to evaluate how abundances of seven woodpecker species varied with habitat variables previously identified as associated with forest bird richness. We found that tree species richness had either a neutral or positive effect on the abundance of all woodpecker species, whereas abundances of most woodpecker species tended to be lower in stands with high densities of lodgepole pine. Abundances of most woodpecker species were positively correlated with density of beetle-killed pines. Relative to control sites, higher densities of most woodpecker species were found at harvested sites where most trembling aspen and large Douglas-fir trees had been retained. Therefore, management strategies that favour a mixture of tree species, with particular attention to retention of aspen, should safeguard populations of most woodpecker species. Abundances of individual woodpecker species were weakly but positively inter-correlated before the beetle outbreak, and less so during and post-outbreak. It thus appears that no strong trade-offs exist among woodpecker species. These results, combined with previously identified positive correlations between woodpecker and forest bird richness, indicate woodpeckers can be managed as a suite for the purpose of managing avian biodiversity as a whole.  相似文献   
2.
Many temperate woodpecker species are thought to be highly conservative in their fecundity with little response to fluctuations in availability of resources. In a 15-year field study in interior British Columbia, we evaluated responses in abundance and fecundity of six species of resident and migrant woodpeckers (downy woodpecker [Picoides pubescens], hairy woodpecker [Picoides villosus], American three-toed woodpecker [Picoides dorsalis], pileated woodpecker [Drycopus pileatus], northern flicker [Colaptes auratus], and red-naped sapsucker [Sphyrapicus nuchalis]) to a large-scale outbreak of mountain pine bark beetles that resulted in a strong positive pulse in food supply. Population densities of woodpecker species increased during outbreak years. Despite the year-round multi-annual increase in food resources, and in contrast to the strong increases in fecundity shown by nuthatches and chickadees, annual fecundity (as indicated by clutch size and number of nestlings that fledged) did not change for any woodpecker species over the study. Similarly, we found no changes in fecundity in response to selective forest harvesting despite numerical increases for woodpeckers at these sites. Our study confirms that these woodpecker species are conservative in their reproductive investment patterns even during strong multi-annual increases in food. Our findings indicate woodpecker populations are regulated numerically through variable survival and/or greater immigration rates, which can result in higher breeding densities temporarily during resource pulses.  相似文献   
3.
Key factors causing the difference of wildlife populations in natural and managed forests are an important field of ecosystem and biodiversity research. To explore the factors contributing to bird-community features in the poorly studied European natural hemiboreal forests, we carried out a comparative study in old-growth and mature stands of five site types in Estonia. The mature stands were of clear-cut origin and managed for timber production. Old-growth hosted both more diverse and more abundant bird communities than mature stands, which does not support the putative ‘old-growth syndrome’ (high diversity at a low density) described previously in temperate Europe. Site-type specificity of bird communities was also more pronounced in old-growth, indicating a timber-harvesting induced process of biotic homogenization. In particular, natural swamp forests had characteristic bird species and those communities may be additionally sensitive to artificial drainage. In terms of invertebrate food supply, the availability of snails, rather than of insects, was related to bird-community characteristics; however, the influence of snails was due to one snail-poor forest type (Vaccinium type pine stands), not management. The abundance of coarse woody debris was the main structural feature affecting bird communities; tree-size variation was additionally important for species richness. A significant unexplained ‘old-growth’ effect remained even after the variables describing food supply and stand structure were taken into account. Our results imply the distinct importance of old-growth of different site types for hemiboreal bird communities. However, we did not obtain any evidence of different key factors structuring the bird communities in old-growth and mature stands.  相似文献   
4.
Large wildfire events in coniferous forests of the western United States are often followed by postfire timber harvest. The long-term impacts of postfire timber harvest on fire-associated cavity-nesting bird species are not well documented. We studied nest-site selection by cavity-nesting birds over a 10-year period (1994–2003), representing 1–11 years after fire, on two burns created by mixed severity wildfires in western Idaho, USA. One burn was partially salvaged logged (the Foothills burn), the other was primarily unlogged (the Star Gulch burn). We monitored 1367 nests of six species (Lewis’s Woodpecker Melanerpes lewis, Hairy Woodpecker Picoides villosus, Black-backed Woodpecker P. arcticus, Northern Flicker Colaptes auratus, Western Bluebird Sialia mexicana, and Mountain Bluebird S. currucoides). Habitat data at nest and non-nest random locations were characterized at fine (field collected) and coarse (remotely sensed) spatial scales. Nest-site selection for most species was consistently associated with higher snag densities and larger snag diameters, whereas wildfire location (Foothills versus Star Gulch) was secondarily important. All woodpecker species used nest sites with larger diameter snags that were surrounded by higher densities of snags than at non-nest locations. Nests of Hairy Woodpecker and Mountain Bluebird were primarily associated with the unlogged wildfire, whereas nests of Lewis’s Woodpecker and Western Bluebird were associated with the partially logged burn in the early years after fire. Nests of wood-probing species (Hairy and Black-backed Woodpeckers) were also located in larger forest patch areas than patches measured at non-nest locations. Our results confirm previous findings that maintaining clumps of large snags in postfire landscapes is necessary for maintaining breeding habitat of cavity-nesting birds. Additionally, appropriately managed salvage logging can create habitat for some species of cavity-nesting birds that prefer more open environments. Our findings can be used by land mangers to develop design criteria for postfire salvage logging that will reserve breeding habitat for cavity-nesting birds.  相似文献   
5.
Woodpeckers, able to excavate holes in trees, can provide resources critical for non-excavator hole users. Supply of woodpecker-made holes in forests depends on excavation rates by the birds and holes’ persistence times. I use 30 years of data from a primeval forest (strictly protected reserve, Bia?owie?a National Park, E Poland) to determine how long woodpecker-made holes persist, and whether their persistence varies across forest types, tree species and conditions, and woodpecker species. I followed the fate of 719 breeding holes, excavated by eight woodpecker species, for up to 27 years, from 1979 to 2010. Almost 80% of hole losses were caused by collapse of either the tree or the section supporting the hole. Holes were retained for (median) 6-7 years in riverine and oak-hornbeam forest but 10 years in coniferous forest. These differences can be explained by almost completely non-overlapping sets of tree species used in these different habitats. Lifespan of holes varied by tree species, ranging from four (Picea abies) to >22 years (Pinus sylvestris, almost 100% dead). The long lifespan of holes in the dead Pinus was exceptional, as otherwise, persistence was much lower for holes excavated in dead trees or limbs (5 years) than for those in living substrates (9 years). Tree species with higher frequency of holes in dead wood showed lower persistence times of holes. Lifespans of holes excavated by individual woodpecker species varied widely and was strongly dependent on frequency with which the species excavated in dead wood. Holes of Dendrocopos minor and Dendrocopos leucotos (only in dead wood) persisted for four years, while holes of Dendrocopos major (able to excavate in living sapwood of some trees) lasted for nine, and those of Dryocopus martius for 18 years. Retention of dead P. sylvestris, decaying Quercus robur in stands and addition/retention of aspens (Populus tremula and Populus tremuloides) in them would provide conditions to increase the availability of relatively persistent woodpecker holes in forests of the Northern hemisphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号