首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
林业   1篇
  3篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The 2002 Biscuit Fire burned through more than 200,000 ha of mixed-conifer/evergreen hardwood forests in southwestern Oregon and northwestern California. The size of the fire and the diversity of conditions through which it burned provided an opportunity to analyze relationships between crown damage and vegetation type, recent fire history, geology, topography, and regional weather conditions on the day of burning. We measured pre- and post-fire vegetation cover and crown damage on 761 digital aerial photo-plots (6.25 ha) within the unmanaged portion of the burn and used random forest and regression tree models to relate patterns of damage to a suite of 20 predictor variables. Ninety-eight percent of plots experienced some level of crown damage, but only 10% experienced complete crown damage. The median level of total crown damage was 74%; median damage to conifer crowns was 52%. The most important predictors of total crown damage were the percentage of pre-fire shrub-stratum vegetation cover and average daily temperature. The most important predictors of conifer damage were average daily temperature and “burn period,” an index of fire weather and fire suppression effort. The median level of damage was 32% within large conifer cover and 62% within small conifer cover. Open tree canopies with high levels of shrub-stratum cover were associated with the highest levels of tree crown damage, while closed canopy forests with high levels of large conifer cover were associated with the lowest levels of tree crown damage. Patterns of damage were similar within the area that burned previously in the 1987 Silver Fire and edaphically similar areas without a recent history of fire. Low-productivity sites on ultramafic soils had 92% median crown damage compared to 59% on non-ultramafic sites; the proportion of conifer cover damaged was also higher on ultramafic sites. We conclude that weather and vegetation conditions — not topography — were the primary determinants of Biscuit Fire crown damage.  相似文献   
2.
In soils, the toxicity of noxious substances such as metals is determined by a number of different factors of chemical, physical, biological, and environmental origin. Addressing these factors as a sum of different parameters, we studied these effects in soil-dwelling indicator species by using ‘sub-cellular’ biomarkers, to see if they can provide an early stage response to environmental disturbances. ‘Sub-cellular’ biomarkers such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the Neutral Red Retention (NRR) assays are well established for the assessment of cytotoxicity of toxicants on cell cultures. Both assays can be carried out in 96-well microplates and evaluated photometrically. To be able to assess the risk potential of contaminated soils using these assays, without changing the soils chemically or physically to accommodate cell cultures, the assays were adapted for ex vivo use. The assays were performed on coelomic liquid extracted from exposed earthworms. Eisenia andrei was exposed in a standardized laboratory soil substrate (OECD soil) spiked with cadmium at a range of concentrations known to be cytotoxic to earthworms. Earthworms were also exposed to ultramafic soils as field-relevant soil substrates, containing high concentrations of a mixture of metals of natural origin such as chromium, cobalt, manganese, and nickel. A significant response was measured with both assays in the coelomocytes of the earthworms exposed to the Cd-spiked OECD soil as well as to the ultramafic soils. It was shown that as biomarkers for the assessment of ‘sub-cellular’ toxicity, the photometrical application of the MTT and the NRR assay promised to be rapid, objective, and easily conductible tools.  相似文献   
3.
Ultramafic soils have naturally high concentrations of metals and are often low in major plant nutrients. Plant species of non-ultramafic origin, such as Dryobalanops lanceolata (Dipterocarpaceae), generally grow less well on these soils. I found minimal changes in growth, but a 17% reduction in foliar potassium, when seedlings of D. lanceolata were grown in a non-native ultramafic soil when compared with a ‘normal’ tropical ultisol. There were, however, marked changes in the ectomycorrhizal community structure on the roots of D. lanceolata. Cenococcum geophilum was at least 10 times more common and Inocybe sp. was one and a half times more common in non-ultramafic soils, whereas Boletales sp. was over 30 times more common in the non-ultramafic soil. These changes may have been brought about by a number of edaphic differences between the two soil types, including high metal concentrations and differences in organic matter content.  相似文献   
4.
The morphological and chemical features of upland soils derived from ophiolitic parent materials in Palawan, Philippines, are summarised from soil survey data, and compared with those on geosynclinal sedimentary rocks. Although the ophiolitic crystalline rocks are lithologically heterogeneous, the soils have similar morphologies, with reddish colours, clay textures, and friable crumb structures. However, their chemical characteristics differ considerably, with a pH range of over one unit, and exchangeable base status ranging from 95% dominance by Mg in soils derived from ultramafic rocks to 75% dominance by extractable Al in soils from felsic rocks. There are also differences in the total contents of most heavy metals, but less for the extractable forms of Mn and Cu. The soils on nearby geosynclinal sedimentary parent materials are also finely textured but are morphologically distinct, with more yellowish subsoil colours, blockier structures, some clayskins and ‘corned beef’ saprolite. They are also more acid and base-deficient, with Al occupying up to 95% of their exchange complexes. In view of the morphological similarities, chemical criteria are needed to separate the edaphically different groups of ophiolitic soils. Exchangeable Mg/ECEC is the best simple criterion. Soil Taxonomy and the FAO World Reference Base fail to distinguish between the mafic and ultramafic ophiolitic soils at subgroup level. Interactions between droughtiness, cation imbalances, phosphate immobilisation, and heavy metal toxicities may determine the stunted vegetation characteristic of some of the ultramafic soils.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号