首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
林业   2篇
  2009年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The 2002 Biscuit Fire burned through more than 200,000 ha of mixed-conifer/evergreen hardwood forests in southwestern Oregon and northwestern California. The size of the fire and the diversity of conditions through which it burned provided an opportunity to analyze relationships between crown damage and vegetation type, recent fire history, geology, topography, and regional weather conditions on the day of burning. We measured pre- and post-fire vegetation cover and crown damage on 761 digital aerial photo-plots (6.25 ha) within the unmanaged portion of the burn and used random forest and regression tree models to relate patterns of damage to a suite of 20 predictor variables. Ninety-eight percent of plots experienced some level of crown damage, but only 10% experienced complete crown damage. The median level of total crown damage was 74%; median damage to conifer crowns was 52%. The most important predictors of total crown damage were the percentage of pre-fire shrub-stratum vegetation cover and average daily temperature. The most important predictors of conifer damage were average daily temperature and “burn period,” an index of fire weather and fire suppression effort. The median level of damage was 32% within large conifer cover and 62% within small conifer cover. Open tree canopies with high levels of shrub-stratum cover were associated with the highest levels of tree crown damage, while closed canopy forests with high levels of large conifer cover were associated with the lowest levels of tree crown damage. Patterns of damage were similar within the area that burned previously in the 1987 Silver Fire and edaphically similar areas without a recent history of fire. Low-productivity sites on ultramafic soils had 92% median crown damage compared to 59% on non-ultramafic sites; the proportion of conifer cover damaged was also higher on ultramafic sites. We conclude that weather and vegetation conditions — not topography — were the primary determinants of Biscuit Fire crown damage.  相似文献   
2.
Fire is a widespread natural disturbance agent in most conifer-dominated forests. In light of climate change and the effects of fire exclusion, single and repeated high-severity (stand-replacement) fires have become prominent land management issues. We studied bird communities using point counting in the Klamath-Siskiyou ecoregion of Oregon, USA at various points in time after one or two high-severity fires. Time points included 2 and 3 years after a single fire, 17 and 18 years after a single fire, 2 and 3 years after a repeat fire (15 year interval between fires), and >100 years since stand-replacement fire (mature/old-growth forest). Avian species richness did not differ significantly among habitats. Bird density was highest 17 and 18 years after fire, lowest 2 years after fire, and intermediate in repeat burns and unburned forest. Bird community composition varied significantly with habitat type (A = 0.24, P < 0.0001) with two distinct gradients in species composition relating to tree structure (live to dead) and shrub stature. Using indicator species analysis, repeat burns were characterized by shrub-nesting and ground-foraging bird species while unburned mature forests were characterized by conifer-nesting and foliage-gleaning species. Bird density was not related to snag basal area but was positively related to shrub height. Contrary to expectations, repeated high-severity fire did not reduce species richness, and bird densities were greater in repeat burns than in once-burned habitats. Broad-leaved hardwoods and shrubs appear to play a major role in structuring avian communities in the Klamath-Siskiyou region. In light of these results, extended periods of early seral broadleaf dominance and short-interval high-severity fires may be important to the conservation of avian biodiversity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号