首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   1篇
  国内免费   4篇
林业   58篇
农学   5篇
基础科学   5篇
  15篇
综合类   85篇
农作物   4篇
水产渔业   1篇
畜牧兽医   12篇
园艺   7篇
植物保护   3篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   14篇
  2011年   12篇
  2010年   16篇
  2009年   21篇
  2008年   15篇
  2007年   18篇
  2006年   9篇
  2005年   1篇
  2004年   10篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1992年   1篇
  1986年   1篇
排序方式: 共有195条查询结果,搜索用时 140 毫秒
1.
2.
苯丙烯酸对黄瓜幼苗光合作用和细胞超微结构的影响   总被引:13,自引:0,他引:13  
 通过基质栽培研究不同浓度的苯丙烯酸对黄瓜幼苗光合作用和超微结构的影响。结果表明,苯丙烯酸浓度在80 µmol·L 时显著地降低了黄瓜幼苗的叶面积、叶绿素a含量、光合速率、蒸腾速率、根系活力和气孔张开数(P<0.05);叶绿体和线粒体等超微结构也受到破坏,而浓度在150 µmol·L 时显著减少了全株干质量和气孔总数,细胞器出现解体现象。  相似文献   
3.
基于水曲柳基材的水性漆漆膜性能研究   总被引:1,自引:1,他引:0  
  目的  水曲柳作为优良的硬质木材,常被用来制造中高档家具。水性漆是一种非常环保的涂料,研究其在水曲柳基材上的漆膜性能对于水性漆性能的提高和涂饰工艺的优化具有重要的现实意义,还可为水性漆在木材上的大规模工业化应用提供理论支持和科学依据。  方法  以水曲柳为基材,用商业水性漆对其进行涂饰,待漆膜完全固化后按照相应标准测定漆膜的各个性能,并用SEM和FTIR分析水性漆在基材上的附着机理。  结果  得到的漆膜厚度为96.63 μm,硬度为H,附着力高至0级,耐水性可达1级;涂饰前后总色差值ΔE为9.86,说明本涂饰较好地保持了水曲柳本身的颜色。由于底漆均匀地覆盖在基材表面,封闭了基材中亲水性的羟基,使得涂饰底漆后基材表面的接触角提高了10°,疏水性能得到提升。涂饰后基材的表面光泽度明显提高,且其平行纹理方向的光泽度比垂直纹理方向的高了40.4%。这主要是由于组成木材的细胞大多呈轴向排列,水性漆主要填充在纵向排列的细胞腔中,很难渗入到以纳米级孔隙为主的细胞壁中。水性漆与基材主要以机械互锁的物理形式相结合,此外也发生了化学反应。1 148 cm? 1处峰强度增加,说明水性漆中的羧基与基材中的羟基发生了酯化反应;出现了新的1 063 cm? 1峰,说明基材中的纤维素与水性底漆中的羟基发生了醚化反应。  结论  水性漆能在水曲柳表面形成较好的附着,保护性能较好,且能有效提高基材的视觉效果,进而提高其商业价值。   相似文献   
4.
以樟子松和欧洲赤松为基材,探究不同涂饰工艺和底漆漆水配比对水性漆漆膜性能的影响。结果表明:基材与水性漆结合良好,漆膜厚度范围为65.91~75.98μm,硬度等级最高为H,最低为B,附着力为0级,光泽度有明显提升。影响漆膜性能因素的顺序为:涂饰工艺>基材>底漆漆水配比,在厚度、硬度、光泽度、耐冲击度及抗回粘性上表现得更为明显。涂饰水性漆后明度显著下降,红绿和黄蓝色指数无明显变化,基材对漆膜色度值的影响更大,400 r之前各因素对漆膜的耐磨性影响较小,400r时工艺Ⅱ漆膜质量损失更严重,经水性漆涂饰后木制品表面平衡接触角增加,润湿性降低。研究结论为水性漆在松木制品、家具以及装饰等领域的更好应用提供了依据。  相似文献   
5.
复合高吸水树脂的制备及性能研究   总被引:1,自引:0,他引:1  
以过硫酸铵为引发剂,以丙烯酸和丙烯酰胺为单体,以高岭土为无机填料,采用反相悬浮法制备高岭土复合淀粉接枝丙烯酰胺—丙烯酸高吸水树脂。探讨了单体质量比、高岭土添加量等因素对产品性能的影响,研究了产品的保水能力,并对产品的结构进行了分析和表征。研究结果表明,该高吸水性树脂具有一定的凝胶强度、流变性,且成本相对较低,可以将其应用到建筑混凝土等材料中,通过树脂的吸水及保水能力从而提高混凝土的保水性,在水土保持边坡防护方面具有很好的应用前景。  相似文献   
6.
陈立贵 《安徽农业科学》2008,36(12):4813-4815
[目的]探索制备高吸水树脂的最佳工艺条件。[方法]以过硫酸钾为引发剂,N,N--亚甲基双丙烯酰胺为交联剂,通过溶液法利用部分中和的丙烯酸聚合成高吸水树脂。研究引发剂用量、交联剂用量和丙烯酸中和度对合成树脂吸水倍率的影响,确定制备高吸水树脂的最佳工艺条件,并分析了合成高吸水树脂的保水性能。[结果]丙烯酸中和度对合成树脂吸水倍率的影响较大。随着丙烯酸中和度和交联剂用量的增加,合成树脂的吸水倍率均呈先增后减的趋势。制备聚丙烯酸(钠)高吸水树脂的最佳工艺条件为:丙烯酸中和度80%,引发剂用量0.16%,交联剂用量0.06%。[结论]合成的聚丙烯酸钠高吸水树脂具有较好的保水性能,在蒸馏水中的吸水倍率可达592 g/g。  相似文献   
7.
党民团  徐浩龙  李雅丽 《安徽农业科学》2012,(7):4222-4223,4232
[目的]制备一种含锌保水聚合物。[方法]采用水溶液聚合法,以N,N-亚甲基双丙烯酰胺(MBA)为交联剂,通过淀粉与丙烯酸-丙烯酸锌共聚、交联,制备了一种含锌复合高吸水聚合物。[结果]复合材料对去离子水、浓度0.9%NaCl的吸水倍率分别为582、180g/g,锌的缓释期大于160 d。[结论]所制复合聚合物所含锌元素可长周期缓慢释放且具理想的保水效能。  相似文献   
8.
将蒙脱土经不同方法进行改性处理,并以此为催化剂,催化丙烯酸与正丁醇反应生成丙烯酸正丁酯。考察了以微波处理的柱撑酸化蒙脱土为催化剂催化合成丙烯酸正丁酯的反应条件。结果表明,以微波处理的柱撑酸化蒙脱土催化效果最好,适宜的反应条件为:丙烯酸为0.1 mol,醇酸的摩尔比为1.2:1,阻聚剂为对苯二酚,其用量为0.3 g,约为丙烯酸质量的4%,催化剂的用量1.7g,约为丙烯酸质量的20%,反应的时间为7 h,在回流状态下,其酯化率为84.1%。催化剂可以重复使用。  相似文献   
9.
【目的】探索漆饰贴面刨花板VOCs及气味释放特性,分析环境因素对板材VOCs和气味平衡状态释放组分的影响,为人造板气味研究提供基础性数据。【方法】以硝基涂料贴面刨花板和水性丙烯酸涂料贴面刨花板为研究对象,建立单因素试验方案,使用气相色谱-质谱/嗅觉测量技术对板材在不同环境条件下释放VOCs和气味情况进行分析,确定2种漆饰贴面刨花板特征气味物质和可能性来源的同时探索环境因素的影响,并对2种板材的VOCs和气味释放情况进行综合评价。【结果】相比硝基涂料贴面刨花板,水性丙烯酸涂料贴面刨花板释放TVOC浓度低、气味化合物数量少且总气味强度低,2种板材均以芳香族化合物和酯类化合物超标最为严重。硝基涂料贴面刨花板主要气味来源为芳香族化合物、酯类和醇类物质,水性丙烯酸涂料贴面刨花板主要气味来源为芳香族化合物和醇类物质。不同气味特征化合物的气味强度与其质量浓度没有直接相关性,但同一种气味特征化合物的质量浓度在一定程度上影响其气味强度大小。随着空气交换律与负载因子比增加,硝基涂料和水性丙烯酸涂料贴面刨花板TVOC释放量和总气味强度降低。随着温度升高,硝基涂料和水性丙烯酸涂料贴面刨花板TVOC释放量和总气味强度增大。随着湿度增加,硝基涂料贴面刨花板TVOC释放量和总气味强度增大,而水性丙烯酸涂料贴面刨花板TVOC释放量和总气味强度减小。硝基涂料贴面刨花板气味物质浓度占TVOC浓度的比例随温度和相对湿度升高而增加,水性丙烯酸涂料贴面刨花板气味物质浓度占TVOC浓度的比例随温度和相对湿度升高而减小,空气交换律与负载因子比对气味物质浓度占TVOC浓度的比例影响不大。【结论】气相色谱-质谱/嗅觉测量技术可作为人造板及家具材料气味研究的手段。相比硝基涂料贴面刨花板,水性丙烯酸涂料贴面刨花板更适宜作为室内装饰材料使用。2种漆饰贴面刨花板的总气味强度和气味评级可通过高斯函数初步建立拟合关系。  相似文献   
10.
以巴尔沙木为原料,脱除木质素后,浸渍丙烯酸溶液并固化得到透明木材,进一步浸渍FeCl3溶液得到FeCl3/聚丙烯酸透明导电木材。采用傅里叶红外光谱(FT-IR)、扫描电镜(SEM)等方法对材料进行表征,结果表明:透明木材在质量分数为0.75%的FeCl3溶液中浸泡60~70 min时,其电导率(0.017 S/m)最佳;经0.5 mol/L FeCl3溶液浸泡后的透明木材,其拉伸强度可达6.03 MPa,相比未浸泡的透明木材(0.55 MPa)提高了近10倍。透明木材对人体不同动作表现出特征性电学变化,具有电阻传感性能,在导电薄膜、人体传感器等领域有潜在的应用价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号