首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
农学   1篇
  1篇
综合类   1篇
畜牧兽医   2篇
植物保护   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2013年   2篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
A better understanding of site-specific factors such as soil salinity that regulate plant invasions is needed. We conducted a 3-mo greenhouse study to evaluate the salinity responses of three local maternal sources of Lepidium alyssoides, which is an indigenous species shown to aggressively colonize disturbed shrubland sites in the southwestern United States, including those affected by high salinity and sodicity. Results indicated that there were little or no population effects on plant evapotranspiration (ET), growth, and tissue Na and Cl concentrations. Significant reductions in seedling growth and ET were largely independent of various isosmotic saline irrigation solutions that included NaCl, Na2SO4, and CaCl2, each at ? 0.1 MPa and ? 0.2 MPa, suggesting that ET and growth were controlled by solution osmotic potential. The combined Na and Cl concentrations in leaves were 9–10% of dry weight with no visible sign of injury. However, increasing leaf mortality and abscission as a proportion of total leaf production was observed in the high-salt treatments (? 0.2 MPa), with a combined Na and Cl concentration reaching 16% with high NaCl. Under saline conditions, considerable foliage salt loads of this species could deposit high-salt litter to potentially alter a landscape to its own favor and to the detriment of other salt-sensitive species. Results of this study add to a limited quantitative database on site-specific salinity factors governing plant invasions by showing the potential for these populations to behave invasively under saline conditions and, thus, potential for soil salinity assessment to predict incipient populations. However, due to its halophytic traits and indigenous status, L. alyssoides may alternatively provide ecosystem services to salinized shrublands of the arid and semiarid southwestern United States.  相似文献   
2.
With declining availability of fresh surface water, brackish groundwater is increasingly used for irrigation in the arid and semi-arid southwestern United States. Brackish water can be desalinated by reverse osmosis (RO) but RO results in a highly saline concentrate. Disposal of concentrate is a major problem hindering augmentation of inland desalination in arid areas. The objective of this study was to determine the effect of texture and saline water irrigation on the physiology of six species (Atriplex canescens (Pursh) Nutt., Hordeum vulgare L., Lepidium alyssoides A. Gray, Distichlis stricta (L.) Greene, Panicum virgatum L., and ×Triticosecale Wittm. ex A. Camus [Secale?×?Triticum]). All species were grown in two contrasting soils and irrigated with the same volume of control water (EC 0.9?dS/m), brackish groundwater (4.1?dS/m), RO concentrate (EC 8.0?dS/m). Several plant physiological measurements were made during the growing season including height, number of stem nodes, average internodal length, number of leaves, leaf length, photosynthetic rates, stomatal conductance rates, transpiration rates, leaf temperatures, stem water potential, and osmotic potential. P. virgatum was the only species that showed significant decrease in plant height and growth with texture and irrigation water salinity. Except for A. canescens and L. alyssoides, number and length of leaves decreased with increasing salinity for all species. No significant differences were observed for photosynthetic, stomatal conductance, and transpiration rates by soil texture or irrigation water salinity. Stem water potential and osmotic potential did show some significant influence by soil texture and irrigation water salinity. Based on the results, RO concentrate can be reused to grow all six species in sand; however, growth of all species showed some limitations in clay. Local reuse of RO concentrate along desert margins with regular soil and environmental quality monitoring can accelerate implementation of inland desalination for sustaining food security.  相似文献   
3.
ABSTRACT

Growth responses of potted ornamental crops to municipal biosolids in the semiarid southwestern USA are not adequately known. In 10- to 11-wk greenhouse pot studies, we evaluated the effects of dried biosolids-amended growing media on four ornamental crop species: Garden chrysanthemum (Dendranthema Xgrandiflorum ‘Megan’), butterfly bush (Buddleia davidii ‘Nanho Blue’), Japanese honeysuckle (Lonicera japonica ‘Purpurea’), and blanket flower (Gaillardia Xgrandiflora ‘Goblin’). The biosolids were composted without bulking agents (100% sewage sludge) and incorporated into growing media at rates ranging from 0 to 593 kg m?3, or 0 to 72% by volume. Biosolids increased substrate pH from 5.8 to 7.2 and electrical conductivity (EC) from 2.6 to 47.3 dS m?1. Any addition of biosolids (≥30 kg m?3) reduced total plant dry matter (DM) of chrysanthemum. Conversely, shoot DM of blanket flower and butterfly bush increased by four- to five-fold at biosolids rates of 59 to 148 kg m?3 (7 to 18% by volume) with corresponding increases in shoot N and P concentrations. Biosolids rates higher than 148 kg m?3 reduced top growth of the latter two species and of Japanese honeysuckle. For all species, growth reductions with excessive biosolids rates likely resulted from osmotic stress and specific NH4 toxicity. However, based on the substantial growth stimulations at moderate biosolids rates, xeric and salt-adapted species, such as blanket flower and butterfly bush, may be ideally suited for expanding the use of highly saline biosolids at semiarid nursery production sites.  相似文献   
4.
Simplifying complex natural products: Computer modeling‐based design leads to highly insecticidal, chemically simpler synthetic mimics of the spinosyn natural products that are active in the field. © 2018 Society of Chemical Industry  相似文献   
5.
Agriculture in Australia isacknowledged as having serious environmentalimpacts. Since the Brundtland Report in 1987, aNational Strategy for Ecologically SustainableDevelopment (ESD) has charted a course for aneconomically, environmentally, and sociallysustainable agriculture. Numerous extensioninitiatives, such as catchment management,Landcare, property management plans, and, morerecently, environmental management systems, aredriving business education programs for farmersin most states in an attempt to address theissues of ESD. Innovative accounting techniquesand models exist, particularly developmentsthat recognize and value biodiversity, monitorenvironmental impacts, and show that renewableresources are indeed ``renewable,' which couldbe the focus of integrated extensioninitiatives supportive of ecologicallysustainable development. Empirical researchconducted during 1996 that exploredenvironmental concern and actions of farmersindicated that farmwomen were better educatedand more likely to be environmentallyconcerned. In addition they were more likely tosupport that concern with actions that indicatethat the farm is being managed for sustainableoutcomes. This paper explores these issues,concluding that there is a need to reconsiderthe focus of business and natural resourcemanagement education for farmers in Australia.  相似文献   
6.
The front cover image is based on the Spotlight Discovery of highly insecticidal synthetic spinosyn mimics ‐ CAMD enabled de novo design simplifying a complex natural product by Thomas C Sparks et al., DOI: 10.1002/ps.5217 .

  相似文献   

7.
Soil salinity reduces cotton growth, yield, and fiber quality and has become a serious problem in the arid southwestern region of the Unites States. Development and planting of salt-tolerant cultivars could ameliorate the deleterious effects. The objective of this study was to assess the genetic variation of salt tolerance and identify salt tolerant genotypes in a backcross inbred line (BIL) population of 142 lines from a cross of Upland (Gossypium hirsutum) × Pima cotton (G. barbadense) at the seedling growth stage. As compared with the non-saline (control) conditions, seedlings under the salinity stress (200 mM NaCl) showed a significant reduction in all the plant growth characteristics measured, as expected. Even though the two parents did not differ in salt response as measured by percent reduction, significant genotype variations in the BIL population were detected for all traits except for leaf number. Based on percent reduction of the traits measured, several BILs were more salt tolerant than both parents. The results indicate that transgressive segregation occurred during the process of backcrossing and selfing even though both parents were not salt tolerant during seedling growth. Coefficients of correlation between all the traits were significantly positive, indicating an association between the traits measured. The estimates of broad-sense heritability were 0.69, 0.46, 0.47, 0.43, and 0.49 for plant height, fresh weight of shoot and root, and dry weight of shoot and root, respectively, indicating that salt tolerance during cotton seedling growth is moderately heritable and environmental variation plays an equally important role. The overall results demonstrate that backcrossing followed by repeated self-pollination is a successful strategy to enhance salt tolerance at the seedling stage by transferring genetic factors from Pima to Upland cotton.  相似文献   
8.
In the semiarid southwestern United States, long-term drought, soil salinity, and land-use intensification have increased the risk of invasive plants that threatens landscape biodiversity. Soil-related factors that regulate plant invasions are not adequately known. We evaluated the salinity responses of three invasive plant species during a 3-mo plant growth period in a greenhouse and during a 2–wk seed germination study in the laboratory. The species included the indigenous Lepidium alyssoides A. Gray var. alyssoides (mesa pepperwort) and the exotic, invasive L. draba L. (whitetop) and L. latifolium L. (perennial pepperweed). A NaCl solution at –0.2 MPa reduced germination of L. alyssoides by ≈ 20% and had no effect on germination of L. draba and L. latifolium, merely delaying their mean germination time by a day or less. Reductions in seedling dry matter production and evapotranspiration (ET) were observed following irrigation with NaCl solutions at –0.1 MPa and –0.2 MPa. However, on the basis of ET and total plant dry matter production under common experimental conditions, the salt resistance of these species greatly exceeded that of salt sensitive bean (Phaseolus vulgaris L.) and equaled or exceeded that of salt-resistant cotton (Gossypium hirsutum L.). Below-ground propagating structures giving rise to clonal shoots were observed for all Lepidium spp., consistent with other reports. The results indicate that vegetative propagule pressure and relatively high resistance to salinity at germination and seedling growth stages could contribute to the invasiveness of these species under saline conditions. A broader impact of the findings is in their application to the larger diversity of invasive species to aid in the understanding of soil salinity and how it may govern plant invasions. This dataset could improve risk assessment measures to favor biodiversity in rangelands and natural ecosystems of semiarid regions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号