首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
畜牧兽医   5篇
  2012年   4篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
The breeding of wild animals for commercial purposes is becoming more frequent nowadays. This situation has led to an increase in contact rates between wild and domestic animals, with subsequent reciprocal transmission of parasites. In this study, we characterized the gastrointestinal and blood parasites of a group of 15 semi-captive guanacos (Lama guanicoe). We characterized gastrointestinal parasites by analyzing fecal samples through the sedimentation–flotation technique and hemoparasites by using blood smears stained with Giemsa. We found several gastrointestinal parasites including Nematoda and protozoans. The most frequently found parasites were Nematodirus sp. and Eimeria sp. In contrast with previous studies, neither Cestoda nor Fasciola were found. The only hemoparasite detected was Mycoplasma haemolamae, a parasite already described in llamas and alpacas. We conclude that the most frequent gastrointestinal parasites of semi-captive guanacos were nematodes and protozoans. Also, the hemoparasite M. haemolamae seems to be prevalent among captive populations of South American camelids. Finally, captive guanacos share several parasites with the traditional livestock. Therefore, keeping captive or semi-captive guanacos without an adequate sanitary protocol might have adverse consequences to adjacent traditional cattle farming and/or for wild animals.  相似文献   
2.
A total of 1,734 cattle faecal samples from 296 dairy-keeping households were collected from urban settings in Nairobi, Kenya. Modified Ziehl–Neelsen staining method and an immunofluorescence assay were used to identify those samples with Cryptosporidium oocyst infection. Oocysts from positive faecal samples were isolated by Sheather's sucrose flotation method and picked from the concentrate using cover slips. Genomic DNA was extracted from 124 of the faecal samples that were positive for Cryptosporidium and was used as template for nested PCR of the 18S rRNA gene. Twenty-five samples (20 %) were PCR-positive for Cryptosporidium, and 24 of the PCR products were successfully cloned and sequenced. Sequence and phylogenetic analysis identified 17 samples (68 %) as Cryptosporidium parvum-like, four samples (16 %) as Cryptosporidium ryanae, three samples (12 %) as Cryptosporidium andersoni and one sample (4 %) as Cryptosporidium hominis. To the best of our knowledge, this is the first genotyping study to report C. parvum-like, C. andersoni and C. hominis in cattle from Kenya. The results of this study show Cryptosporidium infections in calves and cattle may be potential zoonotic reservoirs of the parasite that infects humans.  相似文献   
3.
F18(+)Escherichia coli infections causing post-weaning diarrhoea and/or oedema disease are a major cause of economic losses in pig industry. To date, no preventive strategy can protect pigs from F18(+)E. coli infections. One of the most attractive approaches to eliminate F18(+)E. coli infections is the selection for pigs that are resistant to F18(+)E. coli infections. However, this strategy was not believed to be favourable because of reports of genetic association with the stress-susceptibility gene in the Swiss Landrace. To investigate this potential association more thoroughly, 131 randomly selected Belgian hybrid pigs were genotyped for both the F18(+)E. coli resistance alleles (FUT1(A)) and the stress-susceptibility alleles (RYR1(T)) and their association was investigated by determining the linkage disequilibrium. This linkage disequilibrium (LD=-0.0149) is close to zero and does not differ significantly from 0 (likelihood ratio test chi(1)(2)=1.123, P=0.29), demonstrating no association between the FUT1(A) and RYR1(T) alleles. Furthermore, only a small fraction (4.6%) of the Belgian pigs was found to be resistant to F18(+)E. coli infections. Our results suggest that selection for F18(+)E. coli resistant pigs might be an attractive approach to prevent pigs from F18(+)E. coli infections, unlike to what has previously been postulated.  相似文献   
4.
A total of 1,734 cattle faecal samples from 296 dairy-keeping households were collected from urban settings in Nairobi, Kenya. Modified Ziehl-Neelsen staining method and an immunofluorescence assay were used to identify those samples with Cryptosporidium oocyst infection. Oocysts from positive faecal samples were isolated by Sheather's sucrose flotation method and picked from the concentrate using cover slips. Genomic DNA was extracted from 124 of the faecal samples that were positive for Cryptosporidium and was used as template for nested PCR of the 18S rRNA gene. Twenty-five samples (20?%) were PCR-positive for Cryptosporidium, and 24 of the PCR products were successfully cloned and sequenced. Sequence and phylogenetic analysis identified 17 samples (68?%) as Cryptosporidium parvum-like, four samples (16?%) as Cryptosporidium ryanae, three samples (12?%) as Cryptosporidium andersoni and one sample (4?%) as Cryptosporidium hominis. To the best of our knowledge, this is the first genotyping study to report C. parvum-like, C. andersoni and C. hominis in cattle from Kenya. The results of this study show Cryptosporidium infections in calves and cattle may be potential zoonotic reservoirs of the parasite that infects humans.  相似文献   
5.
This paper reports a study estimating the prevalence of cryptosporidiosis, an emerging zoonosis, in people and cattle in Dagoretti, Nairobi. A repeated cross-sectional survey was carried out among randomly selected cattle keepers in Dagoretti, their dairy cattle and their non-cattle-keeping neighbours in the dry and wet seasons of 2006. A survey was also carried out among a group of people living with human immunodeficiency virus (HIV). Faecal samples were examined for Cryptosporidium oocysts using the modified Ziehl-Neelsen method; 16?% of the samples were also examined using immunofluorescence antibody (IFA) technique. Quality control consisted of blind reviews of slides, examining split samples and confirming slide results with IFA. We found that members of dairy households had a dry season cryptosporidiosis prevalence of 4?% and wet season prevalence of 0.3?%, and non-dairy households, a prevalence of 5 and 0?%, respectively. The cattle dry season prevalence was 15?%, and the wet season prevalence, 11?%. The prevalence in people living with HIV was 5?%. The laboratory quality control system showed some inconsistency within and between different tests, indicating challenges in obtaining consistent results under difficult field and working conditions. In conclusion, this is the first reported study to simultaneously survey livestock, livestock keepers and their neighbours for cryptosporidiosis. We failed to find evidence that zoonotic cryptosporidiosis is important overall in this community. This study also draws attention to the importance of quality control and its reporting in surveys in developing countries.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号