首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
畜牧兽医   7篇
植物保护   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Seven isolated equine front limbs were used to establish the normal T1 relaxation time of equine superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT), and suspensory ligament (SL) using magic angle magnetic resonance (MR) imaging. MR imaging of the metacarpi was performed with the limbs positioned at 55° (the magic angle) relative to the main magnetic field. Transverse spin‐echo proton density and inversion recovery images were acquired. T1 relaxation time was calculated based on ratios of signal intensity determined from the different pulse sequences. T1 relaxation times for SDFT, DDFT, and SL were 288 (±17), 244 (±14), and 349 (±16) ms, respectively. The difference in T1 values between SDFT, DDFT, and SL was statistically significant. T1 values of equine tendons can be determined with magic angle imaging on a clinical MR system using <10 min total scan time. The knowledge of the normal range of T1 values may be useful to identify horses with chronic tendinopathy, where based on the human literature, an increased T1 value may be expected.  相似文献   
2.
Reasons for performing study: Hyperintense signal is sometimes observed in ligaments and tendons of the equine foot on standing magnetic resonance examination without associated changes in size and shape. In such cases, the presence of a true lesion or an artifact should be considered. A change in position of a ligament or tendon relative to the magnetic field can induce increased signal intensity due to the magic angle effect. Objectives: To assess if positional rotation of the foot in the solar plane could be responsible for artifactual changes in signal intensity in the collateral ligaments of the distal interphalangeal joint and in the deep digital flexor tendon. Methods: Six isolated equine feet were imaged with a standing equine magnetic resonance system in 9 different positions with different degrees of rotation in the solar plane. Results: Rotation of the limb induced a linear hyperintense signal on all feet at the palmar aspect of one of the lobes of the deep digital flexor tendon and at the dorsal aspect of the other lobe. Changes in signal intensity in the collateral ligaments of the distal interphalangeal joint occurred with rotation of the limb only in those feet where mediolateral hoof imbalance was present. Conclusions: The position and conformation of the foot influence the signal intensity in the deep digital flexor tendon and in the collateral ligaments of the distal interphalangeal joint. Potential relevance: The significance of increased signal intensity in the deep digital flexor tendon and in the collateral ligaments of the distal interphalangeal joint should be interpreted with regard to the position and the conformation of the foot.  相似文献   
3.
Three isolated equine limbs were imaged with a low-field magnetic resonance system with a vertical magnetic field. Each limb was scanned in multiple positions with mild variation of the angle between the magnetic field and the long axis of the limb. When the long axis of the limb was not perpendicular to the magnetic field, a linear hyperintense signal was present at the palmar aspect of one of the deep digital flexor tendon lobes, at the level of the navicular bone and collateral sesamoidean ligaments, in proton density and T1-weighted pulse sequences. With increased angulation of the limb, the palmar hyperintense signal extended farther distally and proximally and additional signal hyperintensity was present at the dorsal aspect of the distal part of the other lobe of the deep digital flexor tendon. Increased signal intensity was also present in the collateral ligament of the distal interphalangeal joint on the same side as the palmar hyperintense signal in the tendon. The changes in the deep digital flexor tendon are due to the specific orientation of fibers at the palmar and dorsal aspect of the tendon, which is responsible for focal manifestation of the magic angle effect. Careful positioning of the limb perpendicular to the magnetic field can prevent this phenomenon. The association of palmar increased signal intensity in the deep digital flexor tendon with increased signal in the collateral ligament of the distal interphalangeal joint on the same side should be recognized as manifestations of the magic angle effect.  相似文献   
4.
Increased signal intensity in one of the collateral ligaments of the distal interphalangeal (DIP) joint of sound horses in images acquired using a low-field magnet with vertical orientation of the magnetic field was investigated as a possible manifestation of the magic angle effect. Three isolated equine digits were imaged using the following pulse sequences: (1) spin echo T1, (2) turbo spin echo proton density and T2, and (3) 3D gradient echo T1, in different positions by mildly changing the orientation of the long axis of the digit, in the dorsal plane, relative to the magnetic field. The signal intensity in a ligament was significantly increased when the ligament orientation relative to the magnetic field was 55±10°. The signal intensity was markedly increased in pulse sequences with short echo time (TE) 5.0, 4.9, and 3.9 times increased, respectively, for 3D gradient echo T1, spin echo T1, and turbo spin echo proton density) and to a lesser extent with pulse sequences with a longer TE (1.8 times increased for turbo spin echo T2). These changes are characteristic of the magic angle effect. Because of the anatomic orientation of the collateral ligaments of the DIP joint, a slight deviation of the long axis of the digit in the dorsal plane, from the ideal horizontal position, will induce an increased signal intensity that can be confused with desmitis. Careful positioning of the foot in magnetic resonance imaging systems where B 0 is perpendicular to the long axis of the digit is critical to prevent the occurrence of the magic angle effect.  相似文献   
5.
The pharynx is anatomically complex and evaluation can be difficult even with cross‐sectional imaging. Eight animals had computed tomography (CT) studies of the head performed with the mouth open and closed. The studies were anonymized and evaluated by four radiologists for visibility of six anatomic regions (dorsal wall of nasopharynx, lumen of nasopharynx, dorsal margin of the soft palate, ventral margin of the soft palate, oropharynx, and laryngopharynx) and for certainty of a normal or abnormal diagnosis of four different anatomic regions (nasopharynx, soft palate, oropharynx, and laryngopharynx). Mean visual scores differed significantly between mouth positions and were improved when the mouth was open. The ability of radiologists to classify anatomic regions as normal or abnormal vs. unsure also varied between mouth positions, and there was greater uncertainty when the mouth was closed. In addition, estimated volume of the air‐filled nasopharynx differed significantly as a function of mouth position and was greater when the mouth was open (mean=1.187 cm3, SE=0.177) vs. closed (mean=0.584 cm3, SE=0.116). Computed tomographic evaluation of the pharynx can be improved with the mouth open.  相似文献   
6.
The occurrence of herbicide‐resistant weeds has boosted interest in the use of crop allelopathy as a potential alternative to herbicides for weed control in rice (Oryza sativa). The phytotoxic compounds that are released by rice could help to enhance its competitive ability and improve weed management. This study aimed to screen rice genotypes for phytotoxic activity, quantify the amount of momilactone B in various rice tissues, and identify the potential parental lines for quantitative trait locus analysis. Therefore, a total of 41 cultivars from germplasm collections was evaluated for their effects. Significant differences were found among the rice cultivars in their ability to reduce the germination, root growth, and root dry weight accumulation of Alisma plantago‐aquatica. The leaf extract was the most inhibitory to germination. Out of the five cultivars that were tested, momilactone B was detected in four of them: Marateli, Kizilirmak, Karadeniz, and Kiziltan. Karadeniz and Kiziltan were identified as the rice cultivars with a high momilactone B content in the tissues and therefore they could be used in breeding programs to enhance the phytotoxic potential of rice. The development of a rice cultivar with proven allelopathic characteristics could provide an environmentally friendly and low‐cost approach for the control of A. plantago‐aquatica.  相似文献   
7.
Severe portal vascular anomalies have been reported previously accompanying azygos continuation of the caudal vena cava, polysplenia, and situs anomalies in dogs and people. Three dogs with portal vascular anomalies were identified by means of CT angiography as having portal vein aplasia with portal insertion into the caudal vena cava, azygos continuation of the caudal vena cava, and interruption of the pre‐hepatic caudal vena cava. This information confirms that complex embryological defects may occur in patients presenting for congenital portosystemic shunt, and that CT angiography is a non‐invasive method of completely evaluating these potentially non‐surgical portal vascular anomalies.  相似文献   
8.
The effect of the chemical shift artifact, resulting from misregistration or phase cancellation at the interface between compact and trabecular bone, on apparent bone thickness was quantified in six isolated equine limbs. Sagittal T1‐weighted spin echo (SE) and in‐phase three‐dimensional spoiled gradient echo (SPGR) images were acquired twice with a 1.5 T magnetic resonance (MR) unit, switching the frequency encoding direction between acquisitions. Out‐of‐phase SPGR images were also obtained. MR images with different frequency encoding directions were compared with each other and to radiographs made from corresponding 3‐mm‐bone sections. Compact bone thickness was significantly different when comparing images acquired with different frequency encoding directions for both SE and SPGR sequences. Significant differences were identified in the frequency but not the phase encoding direction when measurements of compact bone in MR images were compared with measurements obtained from thin section radiographs for the majority of surfaces studied (P<0.05). Correction of MR measurements with the calculated chemical shift abolished these differences (P>0.05). Measurements of compact bone from out‐of‐phase SPGR sequences were significantly different than from in‐phase sequences (P<0.001) with out‐of‐phase measurements greater than in‐phase measurements by an average of 0.38 mm. These results indicate that the chemical shift artifact results in errors in MR evaluation of compact bone thickness when measurements are performed in the frequency encoding direction or in out‐of‐phase images. For better accuracy, measurements should be performed parallel to the phase encoding direction and avoiding out‐of‐phase gradient echo sequences.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号