首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
畜牧兽医   3篇
  2012年   1篇
  2006年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Bovine mastitis caused by strains of S. aureus is the most economically important disease affecting the dairy industry worldwide. Commercially available vaccines show various degrees of success and work in research laboratories with experimental vaccines suggests that in part, the failure of these vaccines lies in the limited antigenic repertoire contained in the vaccine formulations. Since it seems impractical to produce a vaccine containing antigens from all major S. aureus mastitis isolates, we took the approach of using two surface antigens GapB and GapC that appear to be conserved and constructed a GapC/B chimera as the basis for a vaccine. The humoral and cellular immune responses to GapC/B were compared to the responses to the individual proteins, alone or in combination. The GapC/B protein elicited strong humoral and cellular responses in mice as judged by the levels of total IgG, IgG1, IgG2a, and number of IL-4- and IFN-gamma-secreting cells. These results suggest that this chimeric protein could be an attractive target for further vaccine efficacy studies.  相似文献   
2.
One of the most economically important diseases that affect the dairy industry is bovine mastitis caused by strains of S. aureus. The development of an effective vaccine has been hampered by the antigenic diversity of the bacterium. Immunization with plasmid DNAs, encoding S. aureus antigens either as single molecule or as chimeric products containing at least two antigens, has been proposed as a novel strategy to prevent this costly disease. We continued our studies on a chimeric protein composed of the surface-located GapB and GapC proteins of S. aureus and in this work we tested the effects of DNA vaccination with plasmids encoding the individual antigens as well as the GapC/B protein with or without a boost with the recombinant proteins. The results showed that DNA vaccination alone was unable to elicit a significant humoral response and barely able to elicit a detectable cell-mediated response to the recombinant antigens. These effects were overcome by boosting with the proteins indicating that these DNA vaccines alone were not sufficient to mount an immune response against the S. aureus GapB and GapC proteins.  相似文献   
3.
Staphylococcus aureus is recognized worldwide as a major pathogen causing clinical or subclinical intramammary infections in lactating cows, sheep and goats. S. aureus produces a wide arsenal of cell surface and extracellular proteins involved in virulence. Among these are two conserved proteins with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity named glyceraldehyde-3-phosphate dehydrogenase-B (GapB) and -C (GapC). In this study, we used the S. aureus wild type strain RN6390 and its isogenic gapC mutant H330 in in vitro and in vivo studies and determined that the S. aureus GapC protein plays a role on adherence to and internalization into bovine mammary epithelial (MAC-T) cells. In addition, we found that S. aureus H330 did not caused mastitis after an experimental infection of ovine mammary glands. Together, these results show that GapC is important in the pathogenesis of S. aureus mastitis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号