首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  1篇
综合类   1篇
畜牧兽医   8篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  1990年   1篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
2.
Calcium-sensitive inactivation in the gating of single calcium channels   总被引:9,自引:0,他引:9  
Voltage-activated calcium channels open and close, or gate, according to molecular transition rates that are regulated by transmembrane voltage and neurotransmitters. Here evidence for the control of gating by calcium was found in electrophysiological records of single, L-type calcium channels in heart cells. Conditional open probability analysis revealed that calcium entry during the opening of a single channel produces alterations in gating transition rates that evolve over the course of hundreds of milliseconds. Such alteration of calcium-channel gating by entry of a favored permeant ion provides a mechanism for the short-term modulation of single-ion channels.  相似文献   
3.
In August 2006 a major epidemic of Bluetongue (BT) occurred in north-western Europe, affecting The Netherlands, Belgium, Germany, Luxemburg, and the north of France. It was caused by Br virus serotype 8 (BTV-8), a serotype previously unknown to the EU. Although clinical disease is usually restricted to sheep, this virus also caused clinical disease in a small proportion of cattle. The last clinical outbreak of BT in The Netherlands occurred mid-December 2006. The delay between observation of the first clinical signs by the owner and reporting of a clinically suspect BT situation to the veterinary authorities was approximately 2 weeks. BTV-8-associated clinical signs were more prominent in sheep than in cattle, and the relative frequency of specific clinical signs was different in cattle and sheep. Morbidity and mortality rates were significantly higher among sheep than among cattle, and a higher proportion of cattle than sheep recovered from clinical disease.  相似文献   
4.
Starting August 2006, a major epidemic of bluetongue (BT) was identified in North-West Europe, affecting The Netherlands, Belgium, Germany, Luxemburg and the North of France. It was caused by BT virus serotype 8 (BTV-8), a serotype previously unknown to the European Union (EU). In this outbreak, the virus caused clinical disease in a few individual animals within cattle herds, whereas overt clinical disease was usually restricted to sheep. Investigations in Belgium suggested that the first clinical signs of BTV-8 appeared mid July 2006 in a cattle herd, while the first suspicion of a BT-outbreak in Belgium was reported on 17 August 2006. In the first 10 BTV-8 outbreaks in the Netherlands, the owners indicated that the first clinical signs started approximately 12-17 days before a suspicion was reported to the veterinary authorities via a veterinary practitioner. In BTV-8 affected sheep flocks, erosions of the oral mucosa, fever, salivation, facial and mandibular oedema, apathy and tiredness, mortality, oedema of the lips, lameness, and dysphagia were among the most frequent clinical signs recorded. The most prominent clinical signs in BTV-8 affected cattle herds were: crusts/lesions of the nasal mucosa, erosions of lips/crusts in or around the nostrils, erosions of the oral mucosa, salivation, fever, conjunctivitis, coronitis, muscle necrosis, and stiffness of the limbs. Crusts/lesions of nasal mucosa, conjunctivitis, hyperaemic/purple coloration and lesions of the teats, and redness/hypersensitivity of the skin were relatively more seen on outbreak farms with cattle compared to sheep. Mortality, oedema of the head and ears, coronitis, redness of the oral mucosa, erosions/ulceration of tongue mucosa, purple coloration of the tongue and tongue protrusion and dyspneu were relatively more seen on outbreak farms with sheep compared to cattle.  相似文献   
5.
Data collected in the Netherlands during the Bluetongue serotype 8 (BTV-8) epidemic indicated that in outbreak cattle herds, predominantly dairy and nursing cows were clinically affected and not young stock, beef cattle, beef calves, or breeding animals. In outbreak sheep flocks, mainly ewes and - if present - rams, were clinically affected and not the lambs. Median morbidity rate in outbreak herds was 1.85 per 100 sheep-month at risk and 0.32 per 100 cattle-month at risk for sheep and cattle, respectively. The mean proportion of BT-affected animals in outbreak herds that recovered from clinical disease was approximately eight times higher for cattle compared to sheep in the Netherlands. Median mortality rate in outbreak herds was 0.5 per 100 sheep-month at risk of dying and 0 per 100 cattle-month at risk of dying for sheep and cattle, respectively. Median recovery time of both sheep and cattle that recovered from clinical disease in outbreak herds was 14 days. Median case fatality was 50% in sheep outbreak flocks and 0% in outbreak cattle herds. It is concluded that morbidity and mortality in outbreak cattle herds was very limited during the BTV-8 epidemic in the Netherlands in 2006. In outbreak sheep flocks, morbidity was limited, with exceptions for a few flocks. However, almost 50% of the clinically sick sheep died in outbreak sheep herds.  相似文献   
6.
7.
For the first time, bluetongue has been diagnosed in goats in the Netherlands and in Northwest-Europe. On the 17th of August 2006, bluetongue was for the first time diagnosed in sheep and a little later in cattle in The Netherlands. The clinical symptoms, diagnostics and differential diagnosis of bluetongue (BT) in goats in the Netherlands are described. The most obvious clinical signs were an acute drop in milk production and high fever (up to 42 degrees C). Clinical signs were less obvious than usually seen for clinically diseased sheep and cattle. A few goats showed oedema of the lips and the head, some nasal discharge and scabs on the nose and lips. Further erythema of the skin of the udder and small subcutaneous hemorrhages were seen. Just like one year ago, for the very first suspicion of bluetongue in Northwest-Europe, a good collaboration between practitioners, specialists of the Animal Health Service (GD Deventer), the Specialist Team of the Food and Consumer Product Safety Authority (VWA), and the Central Institute for animal Disease Control (CIDC-Lelystad) in The Netherlands, led to the first and rapid notification and confirmation of the suspicion of bluetongue.  相似文献   
8.
Potential vertical transmission of wild-type bluetongue virus serotype 8 (BTV-8) in cattle was explored in this experiment. We demonstrated transplacental transmission of wild-type BTV-8 in one calf and oral infection with BTV-8 in another calf. Following the experimental BTV-8 infection of seven out of fifteen multi-parous cows eight months in gestation, each newborn calf was tested prior to colostrum intake for transplacental transmission of BTV by RRT-PCR. If transplacental transmission was not established the calves were fed colostrum from infected dams or colostrum from non-infected dams spiked with BTV-8 containing blood. One calf from an infected dam was born RRT-PCR positive and BTV-specific antibody (Abs) negative, BTV was isolated from its blood. It was born with clinical signs resembling bluetongue and lived for two days. Its post-mortem tissue suspensions were RRT-PCR positive. Of the seven calves fed colostrum from infected dams, none became infected. Of the six calves fed colostrum from non-infected dams spiked with infected blood, one calf became PCR-positive at day 8 post-partum (dpp), seroconverted 27 days later, and remained RRT-PCR and Abs positive for the duration of the experiment (i.e., 70 dpp). This work demonstrates that transplacental transmission in late gestation and oral infection of the neonate with wild-type BTV-8 is possible in cattle under experimental conditions.  相似文献   
9.
In semiarid parts of Africa animal traction is still one of the most reliable sources for rural work power. However, draught animals have to produce most of their work power at an unfavourable moment of the year that is at the end of the dry season when feedlot is scare. To improve their condition prior to the planting season, a short training could help. The effect of training can be expressed by the changes in contents of Na(+), K(+)-pumps in the muscle cell membrane. After a training period of 15 days all cattle showed a mean increase in Na(+), K(+)-ATPase of 24% (P < 0.01) in the semitendinosus muscle of the hind leg, whereas the control group showed no change. Bulls demonstrated already after 8 days of training an increase of 20% (P < 0.05). The principal factor responsible for this up-regulation of the Na(+), K(+)-pumps is most probably the excitation of muscles during exercise. In the course of the 15 days training period, the surge of plasma K(+) in during exercise showed a tendency to decrease, but this was not significant. Nevertheless, the reduced elevations of plasma [K(+)] may delay the moment of fatigue and so improve endurance. In conclusion, a training period of 8-15 days improves the contents of Na(+), K(+)-pumps and so the possible work output of draught cattle.  相似文献   
10.
The performance of clinical signs as a diagnostic test for the detection of BTV-8 outbreaks during the 2006-epidemic in The Netherlands was evaluated by constructing and analysing receiver operating characteristic (ROC) curves. The area under the ROC curve of the BT-associated clinical signs in cattle was 0.77. An optimal efficient test (maximising both sensitivity and specificity) in cattle herds combined a sensitivity (Se) of 67% with a specificity (Sp) of 72%, comprising the following clinical signs: ulcerations and/or erosions of oral mucosa or erosions of lips/crusts in or around nostrils or oedema of the nose or hyperaemic/purple coloration of tongue, tongue protrusion or coronitis or apathy/tiredness or muscle necrosis, stiffness of limbs or loathing or refusal to move, prostration or torticollis or anoestrus. The area under the ROC curve of the BT-associated clinical signs in sheep was 0.81. The optimal efficient test in sheep flocks combined a Se of 76% with a Sp of 72%, comprising the following clinical signs: ulcerations of oral mucosa or serous nasal discharge or erosions/ulceration of tongue mucosa or hypersensitivity of the skin or muscle necrosis, stiffness of limbs or coronitis or grinding of teeth or salivation or weakness/paresis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号