首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
  2篇
畜牧兽医   56篇
  2012年   2篇
  2010年   1篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   9篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1999年   9篇
  1997年   1篇
  1991年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
According to European Union recommendations, a test method has been developed to evaluate the effects of veterinary pharmaceuticals on dung feeding insects. This test method was evaluated with the dung beetle Aphodius constans by using fecal residues of ivermectin after a pour-on administration. Dung of different age (and thus containing different concentrations of ivermectin) as well as mixtures of highly-contaminated spiked dung with untreated control dung were studied in five test runs in two laboratories. The concentration of ivermectin (active substance; a.s.) in the dung samples was verified analytically. The main test endpoint was the survival of first instar larvae. The LC50 using dung directly obtained from treated cattle ranged from 470 to 692 microg a.s. kg(-1) dung (dry weight; d.w.) and 67 to 97 microg a.s. kg(-1) dung (fresh weight; f.w.). Using mixtures, the outcome of two tests was almost identical: 770 to 781 microg a.s. kg(-1) dung (d.w.); 109 to 132 microg a.s. kg(-1) dung (f.w.). In comparison to the LC50 values obtained when ivermectin was spiked in control dung at several concentrations (LC50 880-985 microg a.s. kg(-1) dung (d.w.)), the LC50 values were again very similar. Three conclusions can be drawn from these results. The proposed test method seems to be robust and allows for the initiation of an international validation process (including ringtesting). Because of only small differences found in tests in which the test substance was spiked into control dung and those in which dung from treated cattle was applied, the use of a standard test method is proposed. The effects of ivermectin on ecologically relevant dung beetles obtained in a standardised test method reflect the results from field studies and are in the range of environmentally relevant concentrations.  相似文献   
2.
The pharmacokinetics and mammary excretion of eprinomectin were determined in cattle following topical administration at a dose rate of 0.5 mg kg(-1). The kinetics of plasma and milk concentrations were analysed using a one-compartment model. The maximum plasma concentration of 43.76 ng ml(-1)occurred 2.02 days post administration, and the mean residence time was 4.16 days. Eprinomection was detected in the milk at the first sampling time and thereafter for at least 15 days. Comparison of the milk and plasma data demonstrated the parallel disposition of the drug in the milk and plasma with a milk / plasma concentration ratio of 0. 102+/-0.048. The amount of drug recovered in the milk during this period was 0.109% +/- 0.038 of the total administered dose. This very low extent of mammary excretion resulted in low concentrations of eprinomectin in milk. This supports the permitted use in lactating cattle, as the maximum level of residue in milk did not exceed the maximum acceptable limit of 30 ng ml(-1).  相似文献   
3.
This study evaluates the comparative serum disposition kinetics of injectable formulations of doramectin (DRM), ivermectin (IVM) and moxidectin (MXD) in Australian Merino sheep. Thirty-six, 2-year-old sheep were allocated by weight into six groups of six animals. Animals in each group received 200 microg/kg of DRM, MXD, IVM or a combination of two of these drugs by subcutaneous (s.c.) injection. Blood was collected at designated intervals (between 1 h and 40 days after treatment) and the serum analysed by high performance liquid chromatography (HPLC) using fluorescence detection. The results indicated that MXD administration produced a significantly higher maximum serum concentration and a more rapid absorption as compared with DRM and IVM. MXD and DRM had a significantly larger area under the concentration vs. time curve (AUC) than IVM, suggesting a more persistent effect for the former two products in sheep. The AUC for DRM was significantly higher when administered alone as compared with that observed when given in combination with MXD or IVM, suggesting preferential elimination of DRM compared with IVM and MXD from concurrent s.c. administration.  相似文献   
4.
5.
The prophylactic efficacy of microdoses of injectable and pour-on ivermectin formulations against larval stages of Przhevalskiana silenus was assessed in naturally infected goats in the region of Calabria (southern Italy).Sixty-eight goats from two goat farms were divided into five groups: one group remained untreated, while the other four groups were treated with microdoses of ivermectin (5 and 10 microg/kg injectable formulation and 10 and 20 microg/kg pour-on formulation).The microdoses of ivermectin were fully effective in the treatment of goat warble fly infestation (GWFI) as no larvae emerged from the warbles in the treated groups, while all the larvae emerged in the control groups. Irrespective of the type of formulation used, the difference between the treated groups and the control group was statistically significant (P< 0.001). By contrast, no statistical differences were found between the goats treated with the injectable formulation and those receiving the pour-on applications, and between the two doses of the injectable and pour-on formulations used. Given the plasma concentrations it attains at its lowest dose (0.052 - 0.042 ng/ml for the injectable formulation and 0.030 ng/ml for the pour-on) the injectable formulation seems to offer the most reliable route for the administration of ivermectin microdoses and it is acceptable for milk consumption. The introduction of ivermectin in the early eighties and the use of microdoses in some cases have made it possible to control cattle hypodermosis in large areas of Europe. As with cattle hypodermosis, the administration of ivermectin microdoses in goats is particularly interesting because of the low costs involved and the low levels of residues found in goat milk; it may thus constitute the basis for GWFI control campaigns in areas where the disease is prevalent.  相似文献   
6.
The authors describe the compared pharmacokinetics of triclabendazole in three camels and four sheep which were given orally a single dose of 10 mg/kg liveweight. Plasma concentrations of triclabendazole and its main metabolites were determined by high performance liquid chromatography. No parental drug was detected in the blood plasma due to a hepatic first passage effect. It appeared that there was a major difference between the two species, triclabendazole sulfoxide concentrations being two times lower in camels than in sheep.  相似文献   
7.
Pharmacokinetics of dexamethasone and prednisolone were studied in 6 horses given dexamethasone alcohol (IV or IM) or dexamethasone 21-isonicotinate as a solution IV or IM (50 micrograms/kg of body weight), prednisolone 21-sodium succinate IV or IM (0.6 mg/kg of body weight), or prednisolone acetate IM (0.6 mg/kg of body weight). Plasma concentrations were determined using a high-performance liquid chromatographic method. After dexamethasone alcohol (IV) or dexamethasone 21-isonicotinate (IV), the half-life of elimination was similar (53 minutes) for both formulations. After dexamethasone (alcohol and isonicotinate, IM), concentrations were low or nondetected. After prednisolone 21-sodium succinate (IV), the half-life of elimination (99.5 minutes) was significantly (P less than 0.01) longer than that for dexamethasone. After prednisolone 21-sodium succinate (IM), absorption was rapid and bioavailability was high. After prednisolone acetate (IM), absorption was slow and prednisolone was present in plasma for about 7 days. Due to the nonlinearity of prednisolone kinetics, a bioavailability higher than 100% was obtained. The basal plasma hydrocortisone concentration was approximately 70 ng/ml. After dexamethasone (IV or IM), plasma hydrocortisone values decreased after a 2-hour delay and returned to base line after a 3 to 4 day delay. After prednisolone 21-sodium succinate (IV or IM), plasma hydrocortisone decreased immediately (IV) or rapidly (IM) and returned to base line after a 24-hour delay. After prednisolone acetate (IM), plasma hydrocortisone decreased for up to 21 days.  相似文献   
8.
The in vitro biological oxidation of albendazole to its pharmacologically active sulfoxide and its sulfone by ovine liver microsomes has been studied. Sulfoxidation (maximal rate = 0.412 nmole/min/mg of protein, Michaelis constant = 185 X 10(-6) M) was 107 times more potent than formation of albendazole sulfone. The sulfoxidation corresponds to a reduced nicotinamide-adenine dinucleotide phosphate-dependent enzymatic system characterized by a pH optima value around 8. Flavin adenine dinucleotide-containing monooxygenase could be responsible for this S-oxygenation because of the strong inhibitory effect of methimazole. Albendazole sulfoxidase is inhibited competitively by the related anthelmintic drug fenbendazole (inhibitory constant = 243 X 10(-6) M) and noncompetitively by chlorpromazine (inhibitory constant = 135 X 10(-6) M). At high concentration, chloramphenicol, erythromycin, nalidixic acid, and hexobarbital are less active inhibitors, whereas dexamethasone acetate significantly enhances the reaction which is not inhibited by either carbon monoxide, griseofulvin, imidazole, phenylbutazone, or proadifen.  相似文献   
9.
The cytochrome P450 (P450) superfamily represents a group of relevant enzymes in the field of drug metabolism and several exogenous or constitutional factors contribute to regulate its expression. Cattle represent an important source of animal-derived food-products and studies concerning the P450 expression are needed for the extrapolation of pharmacotoxicological data from one species to another and for the evaluation of the consumer's risk associated with the consumption of harmful residues found in foodstuffs. In the present study, possible breed-, gender- and species-differences in P4503A (the P450 subfamily more expressed in the human liver) expression were studied in vitro in Piedmontese (PDM) and Limousin (LIM) meat cattle breeds of both sexes and in domestic Ruminants (cattle, sheep and goats). Cytochrome P450 and P4503A contents as well as CYP3A-dependent drug metabolising enzymes (DME) were measured in liver microsomes. Significant lower levels of P450 (P < 0.001) and P4503A (P < 0.05) contents were observed in PDM vs. LIM of both sexes; the P4503A-dependent DME activities were significantly (P values ranging from 0.05 up to 0.001) higher in PDM cattle, particularly in males. A gender-effect in DME activities was noticed (P < 0.05) only in PDM male cattle. With regards to the species, the expression of both P4503A apoprotein and some of the related DME activities were more pronounced in sheep (P < 0.01 vs. cattle) and in goats (P < 0.05 vs. sheep; P < 0.01 vs. cattle) than in cattle. The significant differences in P4503A expression observed in LIM and PDM cattle are consistent with previously published data on strain- and breed-differences pointed out in rats and men. As far as a possible sex-effect is concerned, no clear-cut evidence is likely to be drawn. Finally, P4503A expression was more relevant in small ruminants.  相似文献   
10.
A study was undertaken to evaluate and compare faecal excretion of moxidectin and ivermectin in horses after oral administration of commercially available preparations. Ten clinically healthy adult horses, weighing 390-446 kg body weight (b.w.), were allocated to two experimental groups. Group I was treated with an oral gel formulation of moxidectin at the manufacturer's recommended therapeutic dose of 0.4 mg/kg b.w. Group II was treated with an oral paste formulation of ivermectin at the recommended dose of 0.2 mg/kg b.w. Faecal samples were collected at different times between 1 and 75 days post-treatment. After faecal drug extraction and derivatization, samples were analysed by High Performance Liquid Chromatography using fluorescence detection and computerized kinetic analysis.For both drugs the maximum concentration level was reached at 2.5 days post administration. The ivermectin treatment groups' faecal concentrations remained above the detectable level for 40 days (0.6 +/- 0.3 ng/g), whereas the moxidectin treatment group remained above the detectable level for 75 days (4.3 +/- 2.8 ng/g). Ivermectin presented a faster elimination rate than moxidectin, reaching 90% of the total drug excreted in faeces at four days post-treatment, whereas moxidectin reached similar levels at eight days post-treatment. No significant differences were observed for the values of maximum faecal concentration (C(max)) and time of C(max)(T(max)) between both groups of horses, demonstrating similar patterns of drug transference from plasma to the gastrointestinal tract. The values of the area under the faecal concentration time curve were slightly higher in the moxidectin treatment group (7104 +/- 2277 ng.day/g) but were not significantly different from those obtained in the ivermectin treatment group (5642 +/- 1122 ng.day/g). The results demonstrate that although a 100% higher dose level of moxidectin was used, attaining higher plasma concentration levels and more prolonged excretion and gut secretion than ivermectin, the concentration in faeces only represented 44.3+/- 18.0% of the total parental drug administered compared to 74.3 +/- 20.2% for ivermectin. This suggests a higher level of metabolization for moxidectin in the horse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号