首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
林业   1篇
农学   2篇
基础科学   1篇
  5篇
综合类   2篇
农作物   1篇
水产渔业   3篇
园艺   1篇
植物保护   4篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2005年   1篇
  2002年   1篇
  1993年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
The objective of this research was to compare selected ecophysiological parameters for a wheat crop found in the Indo‐Gangetic Plains of India and its five dominant weeds. The dominant and regionally ubiquitous weeds in the wheat field that was selected for the study were Anagallis arvensis, Chenopodium album, Melilotus albus, Phalaris minor and Rumex dentatus. Taller weeds, such as C. album and P. minor, constituted one group along with the crop, with a low photosynthetic rate, specific leaf area, leaf nitrogen mass basis, chlorophyll content, photosynthetic nitrogen‐use efficiency and leaf area ratio, in comparison to shorter weeds, such as A. arvensis, M. albus and R. dentatus, which formed another group with a high photosynthetic rate, specific leaf area, leaf nitrogen mass basis, chlorophyll content, photosynthetic nitrogen‐use efficiency and leaf area ratio. Interspecific variations in the photosynthetic rate were driven mainly by variability in the specific leaf area and leaf nitrogen content. The taller weeds and the crop had a low specific leaf area later in the season, whereas the smaller weeds had a relatively high specific leaf area, which might be an adaptation to the shaded environment below the canopy. The result indicates that any weed management in the wheat fields of the Indo‐Gangetic Plains will need two different approaches because of the different strategies followed by the two weed groups that were identified in the present study.  相似文献   
2.
It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems,deteriorating soil quality and changing climate.Its management remains a complex enigma for the scientific community due to its intricate relationship with soil nitrogen (N) availability and moisture-temperature interactions.This article reviews the management aspects of soil C dynamics in light of recent advances,particularly in relation to the availability of inorganic N pools and associated microbial processes under changing climate.Globally,drastic alterations in soil C dynamics under changing land use and management practices have been primarily attributed to the variation in soil N availability,resulting in a higher decomposition rate and a considerable decline in soil organic C (SOC) levels due to increased soil CO2 emissions,degraded soil quality,and increased atmospheric CO2 concentrations,leading to climate warming.Predicted climate warming is proposed to enhance SOC decomposition,which may further increase soil N availability,leading to higher soil CO2 efflux.However,a literature survey revealed that soil may also act as a potential C sink,if we could manage soil inorganic N pools and link microbial processes properly.Studies also indicated that the relative,rather than the absolute,availability of inorganic N pools might be of key importance under changing climate,as these N pools are variably affected by moisture-temperature interactions,and they have variable impacts on SOC turnover.Therefore,multi-factorial studies are required to understand how the relative availability of inorganic N pools and associated microbial processes may determine SOC dynamics for improved soil C management.  相似文献   
3.
The objectives of this study were algal control and health assessments in a temperate eutrophic reservoir. Laboratory and mesocosm-scale in situ top-down biomanipulation experiments using planktivorous fishes and filter-feeding macroinvertebrates were conducted along with identification of the limiting nutrient using nutrient enrichment bioassays (NEBs), and ecosystem health evaluation based on the modified index of biological integrity model (Reservoir Ecosystem Health Assessment; REHA). Nutrients and N/P ratio analyses during 5 years revealed that the reservoir was in a eutrophic–hypertrophic state and that the key limiting nutrients, based on the NEBs, varied among seasons. Reservoir trophic guilds indicated declines in sensitive and endemic fish species and dominance of tolerant omnivores. Model values from multimetric REHAs averaged 25.8, indicating that the ecological health was in “fair to poor” condition. Overall microcosm biomanipulation tests suggested that macroinvertebrates, specifically Palaemon paucidens and Caridina denticulata, were effective candidates for phytoplankton control, compared to fishes. In situ mesocosm experiments revealed the highest removal rates with bluegreen algae and a phytoplankton size fraction of 2–19 μm (R e?>?90%, Mann–Whitney U?=?64.5–74.0, p?<?0.01), the dominant fractions in the reservoir. Our biomanipulation technique may provide a key tool for efficient management and restoration of eutrophied reservoirs.  相似文献   
4.
Using confocal microscopy, tracheid wall organisation was investigated with pontamine fast scarlet 4B (P4B), a cellulose-specific stain that fluoresced red following green excitation. P4B fluorescence was present throughout unlignified walls (cambium, ray cells, resin canals and parenchyma cells) and in two concentric bands around opposite and compression wood tracheids. Scanning electron micrographs demonstrated these bands as the S1 and S3 layers of normal wood, and the S1 and inner S2 layers of compression wood. Fluorescence was also strongly dependent on the polarisation of the excitation light, a phenomenon referred to as bifluorescence. Compared to two other cell wall stains, Congo red and calcofluor white, P4B showed a higher specificity for the S1 and S3 layers and increased bifluorescence. These results suggest that P4B is an ideal tool with which to investigate the orientation of cellulose microfibrils in the S1 and S3 layers of the tracheid wall.  相似文献   
5.
To understand the reason for the success of weeds,we investigated the energetic cost of leaf construction,and certain ecophysiological traits of rice and its dominant weeds.On physiological basis among all weeds,Caesulia axillaris Roxburgh was found to be the most serious,followed by Echinochloa cruss-galli L.Beauv and Echinochloa colonum L.Link,while Fimbristylis miliaceae L.Vahl and Cyperus iria L.were moderate weeds of the rice fields.C.axillaris had the lowest leaf construction cost (LCC) both on a mass basis (1.15 g/g) and on a unit area basis (22.93 g/m2).Comparatively higher specific leaf area,photosynthetic rate,photosynthetic nitrogen use efficiency,leaf area ratio and leaf area index provided C.axillaris with further competitive advantage.Low LCC suggests that weeds utilize carbon resource more efficiently than the crop and potentially spend the saved energy on other competitive strategies viz.seed production,biomass production and high relative growth rate,which results in low crop yield and increase in weed seed bank.  相似文献   
6.
The formation of biogenic amines in Indian oil sardines (Sardinella longiceps) collected from the Tuticorin coast of South India and treated with delayed salt-curing was investigated. Sardines were wet salt-cured in whole and gutted forms and examined in fresh and after 6, 9, 12, and 15 h delayed conditions at ambient temperature (32 ± 2°C) at four stages of salt-curing process for quality parameters and formation of biogenic amines. Moisture content decreased from 76% to 11.3% in salting followed by drying. Similarly, water activity reduced from 0.96 to 0.74 in salt-cured sardines. In contrast, total volatile base nitrogen content increased from 79 to 3,590 mg kg–1 in salt-cured sardines. Halophilic count of sardines was higher (8 log cfu g–1) after salting and decreased in drying stages. The 15 h delayed salt-cured whole sardines had higher histamine contents (1,568.27 mg kg–1), cadaverine (4,059.84 mg kg–1), putrescine (1,604.95 mg kg–1), and tyramine (862.94 mg kg–1) on the final day of drying. Whole sardines had higher biogenic amines and halophilic bacterial counts than the gutted sardines. The whole and gutted sardines salt-cured up to a delay of 6 and 12 h, respectively, at ambient temperature yielded the acceptable quality products with respect to biogenic amines.  相似文献   
7.
8.
Origin recognition complex (ORC) proteins serve as a landing pad for the assembly of a multiprotein prereplicative complex, which is required to initiate DNA replication. During mitosis, the smallest subunit of human ORC, Orc6, localizes to kinetochores and to a reticular-like structure around the cell periphery. As chromosomes segregate during anaphase, the reticular structures align along the plane of cell division and some Orc6 localizes to the midbody before cells separate. Silencing of Orc6 expression by small interfering RNA (siRNA) resulted in cells with multipolar spindles, aberrant mitosis, formation of multinucleated cells, and decreased DNA replication. Prolonged periods of Orc6 depletion caused a decrease in cell proliferation and increased cell death. These results implicate Orc6 as an essential gene that coordinates chromosome replication and segregation with cytokinesis.  相似文献   
9.
We have reported the molecular characterization including gene silencing, superoxide activity, superoxide anion production, gene expression and molecular characterization of a mitochondrial manganese superoxide dismutase (mMnSOD) from striped murrel Channa striatus (named as CsmMnSOD). The CsmMnSOD polypeptide contains 225 amino acids with a molecular weight of 25 kDa and a theoretical isoelectric point of 8.3. In the N-terminal region, CsmMnSOD carries a mitochondrial targeting sequence and a superoxide dismutases (SOD) Fe domain (28–109), and in C-terminal region, it carries another SOD Fe domain (114–220). The CsmMnSOD protein sequence shared significant similarity with its homolog of MnSOD from rock bream Oplegnathus fasciatus (96 %). The phylogenetic analysis showed that the CsmMnSOD fell in the clade of fish mMnSOD group. The monomeric structure of CsmMnSOD possesses 9 α-helices (52.4 %), 3 β-sheets (8.8 %) and 38.8 % random coils. The highest gene expression was noticed in liver, and its expression was inducted with fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila) infections. The gene silencing results show that the fish that received dsRNA exhibited significant (P < 0.05) changes in expression when compared to their non-injected and fish physiological saline-injected controls. The SOD activity shows that the activity increases with the spread of infection and decreases once the molecule controls the pathogen. The capacity of superoxide anion production was determined by calculating the granular blood cell count during infection in murrel. It shows that the infection influenced the superoxide radical production which plays a major role in killing the pathogens. Overall, this study indicated the defense potentiality of CsmMnSOD; however, further research is necessary to explore its capability at protein level.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号