首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
农学   1篇
  5篇
农作物   1篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   3篇
排序方式: 共有7条查询结果,搜索用时 62 毫秒
1
1.
Priming offers an effective means for counteracting different stresses induced oxidative injury and raising seed performance in many crop species. The present study was carried out to investigate the ability of potassium nitrate (KNO3) and urea to promote the tolerance of different maize hybrids to drought and salt stresses to identify some biochemical parameters associated with KNO3 and urea induced resistance in maize seedlings. An experiment was conducted in a controlled environment of the laboratory at the college of agriculture, Shiraz University, Shiraz Iran, during 2010. The first factor was stress type and intensity at five levels; moderate drought, severe drought, moderate salt, severe salt, and control (without stress). Seed priming was the second factor; water as control, KNO3, and urea, and maize hybrids, including Maxima, SC704, Zola, and 304 were the third factor. Results indicated that the highest chlorophyll a (Ch a), chlorophyll b (Ch b), total chlorophyll (Ch T) contents, and carotenoids (Car) were found in no stress treatments and the most proline, protein contents, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities in severe drought treatment. Also, results revealed that generally, drought and salinity stresses decreased the amount of Ch a and the lowest Ch a was recorded for severe salinity stress (4.29 mg g?1). Stresses caused decrease in Ch b, but the effect of sever salinity level was higher than the others. Priming of KNO3 had significantly higher proline content than water and urea priming. The SC704 and 304 hybrids showed higher proline content than the other ones. Finally, the maize seed KNO3 and urea priming lead to high activities of antioxidant defensive enzymes and increase the tolerance level to abiotic stresses such as salt and drought.  相似文献   
2.
The effect of source reduction on yield and yield components of three maize hybrids at three plant densities was studied under agro-climatic conditions in southern Iran. Field experiments were conducted at the research farm of the College of Agriculture, Shiraz University, Shiraz, Iran, located at Bajgah (52° 35′ N and 39° 4′ E, 1810 masl) during the 2008 and 2009 growing seasons. The treatments included three hybrids, three plant densities and defoliation, arranged in the main, subplots and sub-subplots, respectively. Defoliation treatments, which consisted of removing all the leaves from one side of the maize plants, were imposed when plants were at the silking stage. Silking was taken as the time when 50% of the plants in a row presented visible silks. Partial defoliations included control, and 50% defoliation at 25 and 35 days after silking (defoliation treatments were applied to all plants in each plot). The experiments were conducted in a randomized complete block (RCB) design with three replications. Dry matter accumulation was assessed by sampling ears at 7-day intervals from the mid-silking stage to black layer formation. Defoliation treatments decreased grain yields significantly in both years. The highest grain yield in 2008 (19 t ha?1) was obtained from hybrid Maxima ‘524’ and in 2009 (14 t ha?1) from hybrid 704 at 95,000 plants ha?1 density. Defoliation treatments decreased grain yields due to a reduction in the number of kernels per ear, as well as mean kernel weight. Some other measured parameters including stalk, shank, husk and cob dry weights, and cob and ear lengths were also decreased under defoliation treatments. If 50% of the photosynthetic area after silking was removed, the quantity of retransferred assimilates from stalk to kernel was increased. Finally, partial defoliation, 25 days after silking, reduced all the yield components more than any other treatments.  相似文献   
3.
Environmental stresses present major challenges in our quest to achieve sustainable food production. The reactions of plants to environmental stresses are complex and involve many kinds of physiological and biochemical responses. Stress causes multifarious adverse effects in plants. Production of a family of reactive oxygen species (ROS) is a common phenomenon. When plants are subjected to environmental stress, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in an oxidative damage. Plants with high levels of antioxidant enzyme activity are reported to have greater resistance to this oxidative damage. The activities of component enzymes or the antioxidant levels are usually only double in response to many stress situations. This rather moderate response might be understood if we consider that the system is geared to self-destruction when it comes under threat. Understanding the mechanisms by which plants perceive environmental signals and transmit the signals to cellular machinery to activate adaptive responses is of fundamental importance to biology. The present review is focusing on ROS generation and plant defenses to them.  相似文献   
4.
In most rainfed production areas where wheat fallow is common, crop yield could be improved by changing to more diverse crop rotations. It seems necessary to identify crop cultivars suitable for such diversification. This study was aimed at determining the responses of two common bean cultivars with different growth habits (Sayyad as an indeterminate and D81083 as a determinate cultivar) to drought stress. The study was conducted in a greenhouse during the 2008 growing season. A factorial experiment in a randomized complete block design with four replications and four water levels [100, 75, 50 and 25% of field capacity (FC) by weight] was used. The results showed that plant height, number of leaves, leaf area, number of pods, pod dry matter (DM) and total plant DM weights of both cultivars were significantly reduced under drought stress. Furthermore, at 50 and 25% FC, all plant pods of both cultivars were aborted. The common bean cultivar with a determinate growth habit appeared to have potential as a dryland rotation crop for farming in arid regions. Further field research might shed more light on the sensitivity of bean cultivars to drought stress with the aim of crop diversification for dryland areas, where adequate moisture supply is a limiting factor for crop production.  相似文献   
5.
Evaluation of source or sink limitations on maize (Zea mays L.) yield and yield components is important for the rational design of agricultural practices as well as breeding strategies. There is little information on how the source or sink limitations during the effective grain-filling period affect final kernel quality. The objective of this study was to evaluate the effect of source/sink manipulation in different times after mid-silking stage on kernel weight (KW), kernel number per square meter (KN m?2), kernel protein and oil of different maize hybrids. Field experiments were conducted at the experimental field of College of Agriculture, Shiraz University, Shiraz, Iran, located at Bajgah (52° 35′ N and 39° 4′ E and 1810 m above sea level, asl) during the 2008 and 2009 growing seasons. The treatments included three hybrids and defoliation that were arranged in the main, and subplots, respectively. Leaves removal treatments were imposed when plants were at the mid-silking stage. Silking was taken as the time when 50% of the plants in a row presented visible silks. Defoliations included control, 50% of defoliation at 25 (early defoliation), and 35 (late defoliation) days after silking (defoliation treatments were applied to all plants of each plot). The experiments were conducted in randomized complete block (RCB) design with three replications and the treatments in a split-plot arrangement. Early defoliation greatly reduced kernel growth rate and grain filling period, resulting in lower mean kernel weight. Defoliation treatments modified KN m?2 and kernel number per ear (KNPE) and variations in these components affected protein and oil content. Decreased source size by defoliation decreased kernel protein content dramatically with no significant change in oil content. Differences among treatments appeared to be related only to the post-flowering source/sink ratio. Therefore, to improve protein yield in maize, hybrids and agronomic practices should aim to increase the post-flowering source/sink ratio.  相似文献   
6.
Drought can be a critical limitation on peanut yield. A physiological trait that may help to ameliorate drought is limited transpiration (TRlim), defined as a limitation on further increases in transpiration rate (TR) under high vapour pressure deficit (VPD) conditions. The advantage of the TRlim trait is that it allows plant water conservation to increase soil water availability for use during late‐season drought. While this trait has been identified in peanut, there is no information of how readily the trait may be transfer to progeny lines. The objective of this study was to obtain preliminary information on the expression of the TRlim trait in two peanut progeny populations. One population was runner type of 88 RILs derived from the mating of Tifrunner × NC 3033. The second set was selected for the virginia‐type phenotype of large pods obtained from mating of PI 585005 (ICGV 86015) and N0808olJCT, both of which expressed the TRlim trait. A two‐tier screen was applied to both populations. The initial screen was based on exposure of de‐rooted shoots to silver ions. Fifteen runner type and 12 virginia type were selected for direct measures of transpiration response to varying VPD. The results from each of the two populations showed that an effective expression of the TRlim trait occurred in about 30% of the progeny in each population. While these results do not offer a definitive index of inheritance, they do indicate that there appears to be a strong possibility of transferring the TRlim trait to progeny genotypes.  相似文献   
7.
Peanut (Arachis Hypogeae L.) is commonly grown on sandy soil and in environments with intermittent rainfall, both of which can lead to soil water-deficit. Limited transpiration (LT) under elevated vapor pressure deficit (VPD) can result in water conservation, allowing sustained physiological activity later in the season during reproductive development. The objective of this study was to expand the number of progeny lines phenotyped for expression of the LT trait from the mating of Tifrunner (LT trait not expressed) × NC 3033 (LT trait expressed) to allow a preliminary examination of inheritance. Half of the 24 phenotyped lines expressed LT with their VPD threshold ranging from 2.16 to 3.38 kPa. Six of the 12 genotypes expressing LT had a threshold at 2.65 kPa or less, which is the range likely to be relevant in most peanut environments. These results, indicating epistatic inheritance, are supportive of LT expression in progeny lines at a reasonable frequency for relevant use in cultivar development for water-deficit conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号