首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  10篇
综合类   4篇
农作物   1篇
畜牧兽医   6篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   8篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Columnar stalagmites in caves of the Guadalupe Mountains during the late Holocene record a 4000-year annually resolved climate history for the southwestern United States. Annual banding, hiatuses, and high-precision uranium-series dating show a present day-like climate from 4000 to 3000 years ago, following a drier middle Holocene. A distinctly wetter and cooler period from 3000 to 800 years ago was followed by a period of present day-like conditions, with the exception of a slightly wetter interval from 440 to 290 years before the present. The stalagmite record correlates well with the archaeological record of changes in cultural activities of indigenous people. Such climate change may help to explain evidence of dwelling abandonment and population redistribution.  相似文献   
2.
REASONS FOR PERFORMING STUDY: Several therapeutic agents have been tested in models of ischaemia and reperfusion injury (IRI) in equine jejunum, with mixed results. This study was based on the use of an organ perfusion solution (OPS) designed to protect human allografts from IRI. HYPOTHESIS: A modified OPS can preserve the integrity of equine large colon during 12 h of isolated pulsatile perfusion, in the absence of oxygen and blood. METHODS: Segments of large colon were removed from anaesthetised horses, the contents removed and the mucosa rinsed with 0.9% saline. Experimental segments were perfused for 12 h with one litre modified OPS (n = 7) delivered by pulsatile flow through an extracorporeal circuit. Control segments (n = 4) were perfused on the same circuit with one litre of autologous blood. Vascular resistance, flow and pressure were measured serially, and aliquots of OPS and blood drawn hourly for routine biochemical analyses. Mucosal biopsies of the experimental and control segments were taken at 0, 6 and 12 h and in vivo mucosal tissue at 0 h for baseline comparison. All biopsies underwent histomorphometric analysis and immunohistochemical assessment of calprotectin activity. RESULTS: All colon segments were machine perfused without technical complications. Vascular and biochemical indices remained constant over 12 h in the OPS group, and were constant over 6 h in the control group, but deteriorated later. Mucosal integrity, expression of cyclooxygenases-1 and -2, and expression of mucosal calprotectin were unchanged in the OPS group compared with the baseline tissues, and mucosal integrity was superior to the control tissues. CONCLUSIONS: A modified OPS designed to target specific pathways of damage from IRI can preserve colonic mucosal integrity for 12 h in the absence of blood and oxygen.  相似文献   
3.
REASON FOR PERFORMING STUDY: The cytosolic protein complex, calprotectin, is abundant in neutrophils and could be used to improve the ability to localise and assess neutrophil infiltration in the equine intestine during ischaemia and reperfusion (I/R), but further study is required. OBJECTIVES: To assess the number of calprotectin-containing cells by immunohistochemistry in correlation with direct counting and scoring of neutrophils in the equine colon during I/R. METHODS: One and 2 h ischaemia of the left dorsal colon were induced, followed by 30 min reperfusion under general anaesthesia or by 18 h reperfusion after anaesthetic recovery. Biopsies were processed for light microscopy and stained with H/E for detection of neutrophils. To identify calprotectin-containing cells, immunohistochemistry was performed on formalin-fixed tissues with the murine MAC 387 antibody and a biotin-free peroxidase staining procedure. The number of neutrophils within submucosal venules and the colonic mucosa were calculated and compared with the number of calprotectin-positive cells. RESULTS: The number of calprotectin-positive cells within submucosal venules and within the colonic mucosa correlated significantly with the accumulation of neutrophils within the corresponding tissue segments. Within the submucosal venules, both calprotectin-positive cells and H/E-stained neutrophils increased with duration of ischaemia and peaked after 30 min of reperfusion. After 18 h reperfusion the number of these cells declined within the vessels. After 2 h ischaemia, neutrophils started to migrate into the mucosa towards the epithelium, with a significant increase over time during reperfusion, and peak infiltration after 18 h reperfusion. CONCLUSIONS: Neutrophil infiltration into the colon after I/R is a time-dependent process, involving migration through the submucosa towards the epithelium.  相似文献   
4.
Soil, the “Earth's thin skin” serves as the delicate interface between the biosphere, hydrosphere, atmosphere, and lithosphere. It is a dynamic and hierarchically organized system of various organic and inorganic constituents and organisms, the spatial structure of which defines a large, complex, and heterogeneous interface. Biogeochemical processes at soil interfaces are fundamental for the overall soil development, and they are the primary driving force for key ecosystem functions such as plant productivity and water quality. Ultimately, these processes control the fate and transport of contaminants and nutrients into the vadose zone and as such their biogeochemical cycling. The definite objective in biogeochemical‐interface research is to gain a mechanistic understanding of the architecture of these biogeochemical interfaces in soils and of the complex interplay and interdependencies of the physical, chemical, and biological processes acting at and within these dynamic interfaces in soil. The major challenges are (1) to identify the factors controlling the architecture of biogeochemical interfaces, (2) to link the processes operative at the individual molecular and/or organism scale to the phenomena active at the aggregate scale in a mechanistic way, and (3) to explain the behavior of organic chemicals in soil within a general mechanistic framework. To put this in action, integration of soil physical, chemical, and biological disciplines is mandatory. Indispensably, it requires the adaption and development of characterization and probing techniques adapted from the neighboring fields of molecular biology, analytical and computational chemistry as well as materials and nano‐sciences. To shape this field of fundamental soil research, the German Research Foundation (DFG) has granted the Priority Program “Biogeochemical Interfaces in Soil”, in which 22 individual research projects are involved.  相似文献   
5.
The age and evolution of the Grand Canyon have been subjects of great interest and debate since its discovery. We found that cave mammillaries (water table indicator speleothems) from nine sites in the Grand Canyon showed uranium-lead dating evidence for an old western Grand Canyon on the assumption that groundwater table decline rates are equivalent to incision rates. Samples in the western Grand Canyon yielded apparent water table decline rates of 55 to 123 meters per million years over the past 17 million years, in contrast to eastern Grand Canyon samples that yielded much faster rates (166 to 411 meters per million years). Chronology and inferred incision data indicate that the Grand Canyon evolved via headward erosion from west to east, together with late-stage ( approximately 3.7 million years ago) accelerated incision in the eastern block.  相似文献   
6.
The veterinary antibiotic sulfadiazine (SDZ), labelled by 14C, was administered to pigs to follow the fate of the drug and its metabolites in manure and manure-amended soil, and to investigate the dynamics of drug effects on resistance genes and bacterial communities. In the manure sampled over 10 days, more than 96% of the drug was found as parent compound or metabolites N-acetyl-SDZ and 4-hydroxy-SDZ. While the manure was stored the concentration of SDZ increased by 42% due to deacetylation of the metabolite N-acetyl-SDZ, whereas the minor metabolite 4-hydroxy-SDZ kept constant. In the soil the extractable amounts of the compounds decreased exponentially to less than 1 mg kg?1 within 11 days after manure amendment. The abundances of SDZ resistance genes sul1 and sul2 were determined by qPCR relative to 16S rRNA genes in total DNA from manure and manure-amended soil. In manure both genes increased exponentially in copy number during the first 60 days of storage, suggesting preferential growth of resistant populations. However, the abundance of sul1 and sul2 decreased below 10?5 copies per 16S rRNA gene after 175 days. With manure high amounts of sul1 and sul2 were introduced into the soil which were reduced by more than 10 times within 24 days. Thereafter, sul1 was stably maintained in soil, while sul2 further decreased between day 60 and day 165. A mathematical model was developed that could well explain the time course of sul gene abundance by considering the cost of sul genes, horizontal gene transfer, and selection of the resistant populations in the presence of SDZ. Modelling revealed a selective effect of SDZ on sul2 even at low concentrations down to 0.15 mg kg?1 soil. Bacterial community profiles of manure and manure-amended soil were distinct, indicating that bacteria introduced with manure do not become prominent in soil. The composition of the bacterial community in manure constantly changed during storage, but mainly during the first 10 days. Profiles of soil bacterial communities revealed only a transient perturbation by manure containing SDZ.  相似文献   
7.
Pseudomonas spp. are one of the most important bacteria inhabiting the rhizosphere of diverse crop plants and have been frequently reported as biological control agents (BCAs). In this work, the diversity and antagonistic potential of Pseudomonas spp. in the rhizosphere of maize cultivars Nitroflint and Nitrodent grown at an organic farm in Brazil was studied by means of culture-dependent and -independent methods, respectively. Sampling of rhizosphere soil took place at three different stages of plant development: 20, 40 and 106 days after sowing. A PCR-DGGE strategy was used to generate specific Pseudomonas spp. fingerprints of 16S rRNA genes amplified from total community rhizosphere DNA. Shifts in the relative abundance of dominant populations (i.e. PCR-DGGE ribotypes) along plant development were detected. A few PCR-DGGE ribotypes were shown to display cultivar-dependent relative abundance. No significant differences in diversity measures of DGGE fingerprints were observed for different maize cultivars and sampling times. The characterisation and assessment of the antagonistic potential of a group of 142 fluorescent Pseudomonas isolated from the rhizosphere of both maize cultivars were carried out. Isolates were phenotypically and genotypically characterised and screened for in vitro antagonism towards three phytopathogenic fungi and the phytopathogenic bacterium Ralstonia solanacearum. Anti-fungal activity was displayed by 13 fluorescent isolates while 40 isolates were antagonistic towards R. solanacearum. High genotypic and phenotypic diversity was estimated for antagonistic fluorescent Pseudomonas spp. PCR-DGGE ribotypes displayed by antagonists matched dominant ribotypes of Pseudomonas DGGE fingerprints, suggesting that antagonists may belong to major Pseudomonas populations in the maize rhizosphere. Antagonists differing in their genotypic and phenotypic characteristics shared the same DGGE electrophoretic mobility, indicating that an enormous genotypic and functional diversity might be hidden behind one single DGGE band. Cloning and sequencing was performed for a DGGE double-band which had no corresponding PCR-DGGE ribotypes among the antagonists. Sequences derived from this band were affiliated to Pseudomonas stutzeri and P. alcaligenes 16S rRNA gene sequences. As used in this study, the combination of culture-dependent and -independent methods has proven to be a powerful tool to relate functional and structural diversity of Pseudomonas spp. in the rhizosphere.  相似文献   
8.
9.
Large amounts of veterinary antibiotics enter soil via manure of treated animals. The effects on soil microbial community structure are not well investigated. In particular, the impact of antibiotics in the presence of manure is poorly understood. In this study, two agricultural soils, a sandy Cambisol (KS) and a loamy Luvisol (ML), were spiked with manure and sulfadiazine (SDZ; 0, 10 and 100 μg g?1) and incubated for 1, 4, 32 and 61 days. Untreated controls received only water. The microbial community structure was characterised by investigating phospholipid fatty acids (PLFA) and using PCR–denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. The total concentration of PLFA increased with addition of manure and was reduced by both SDZ concentrations at incubation times >4 days. The SDZ addition decreased the bacteria:fungi ratio. The largest stress level, measured as ratio of PLFA (cyc17:0 + cyc19:0)/(16:1ω7c + 18:1ω7c), was found for the controls, followed by the manure treatments and the SDZ treatments. A discriminant analysis of the PLFA clearly separated treatments and incubation times. Both soils differed in total PLFA concentrations and Gram?:Gram+ ratios, but showed similar changes in PLFA pattern upon soil treatment. Effects of manure and SDZ on the bacterial community structure were also revealed by DGGE analysis. Effects on pseudomonads and β-proteobacteria were less pronounced. While community structure remained altered even after two months, the extractable concentrations of SDZ decreased exponentially and the remaining solution concentrations after 32 days were ≤27% of the spiking concentration. Our results demonstrate that a single addition of SDZ has prolonged effects on the microbial community structure in soils.  相似文献   
10.
Plant growth-promoting rhizobacteria and arbuscular mycorrhizal (AM) fungi represent two main groups of beneficial microorganisms of the rhizosphere. The role of different strains of Azospirillum on AM fungi development was evaluated by measuring the percentage of AM colonisation of the root system in durum wheat and maize plants, grown under both greenhouse and field conditions. The effect of wild-type Azospirillum brasilense strain Sp245 and genetically modified (GM) derivatives overproducing indole-3-acetic acid was assessed at greenhouse level in (1) three different cultivars of durum wheat, in the presence of indigenous AM fungi and (2) maize plants artificially inoculated with Glomus mosseae and Glomus macrocarpum. In addition, the establishment of natural AM fungal symbiosis was evaluated using Azospirillum lipoferum CRT1 in maize plants at field level. Despite the stimulatory effect of the different Azospirillum inocula on root growth, no significant differences in AM colonisation were found, independently of the AM fungus involved, either in wheat or in maize plants. Similarly, GM A. brasilense, which strongly stimulates root development, did not affect AM formation. Although these results were obtained in conditions in which the mycorrhization rate was moderate (15–30%), overall considered they indicate that the use of wild-type or GM Azospirillum phytostimulators does not alter mycorrhization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号