首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2024年   1篇
  2023年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
为了快速估算免耕种植夏玉米出苗数,提高大田夏玉米种植管理的精准性,本研究利用无人机搭载可见光相机获取夏玉米田块高分辨率可见光影像,计算8种植被指数并结合最大类间方差法分割植被与非植被,经分析,选择红色植被指数(RI)二值化图像对可见光影像掩膜;然后统计夏玉米和杂草的24项纹理特征,比较杂草特征的变异系数及其与夏玉米的相对差异系数,选择红色方差提取夏玉米苗的特征,使用时序交点阈值法确定的阈值去除杂草干扰;提取夏玉米苗形态学特征参数作为样本,采用支持向量机(SVM)、BP神经网络、K近邻和决策树4种算法构建夏玉米苗数预测模型。结果表明,SVM和决策树算法的整体效果较好,决定系数均超过0.8且平均绝对误差(MAE)小于0.3,尤以决策树模型的精度最高,可达94.1%。本研究结果可为大面积夏玉米出苗率估测提供技术支持。  相似文献   
2.
为快速准确提取可见光遥感图像中的林区植被,降低林区复杂地物与不均匀的光照对提取效果的影响。采用无人机获取的林区可见光遥感图像,利用ArcGIS软件根据植被与裸地、道路以及光照均匀程度的不同占比进行裁剪,获得5个试验样区,分别利用多尺度分割、光谱差异分割和多尺度结合光谱差异分割方法对样区影像进行分割,应用最近邻分类方法分类并分析3种分割方法对分类精度的影响。研究结果表明:基于多尺度分割的分类精度整体优于光谱差异分割和多尺度结合光谱差异分割,植被分类总体精度分别为90.0%、93.0%、92.0%、89.0%、94.0%,Kappa系数分别为0.801、0.855、0.839、0.781、0.880。使用多尺度分割在林区植被提取时受环境影响小,可以有效提取林区植被信息。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号