首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础科学   1篇
  3篇
综合类   1篇
农作物   1篇
  2020年   1篇
  2016年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Cultivation of high-yielding crop varieties and intensive cropping has depleted the soil fertility in Northwest (NW) India, resulting in the appearance of multi-nutrient deficiencies in different crops and cropping systems. In the present investigation, geo-referenced soil samples from Indian Punjab were analyzed to map fertility status using a Geographical Information System (GIS). Soil texture, which affects soil hydraulic properties and soil strength, varied from sandy to clayey loam, with majority (47.3%) of the cultivated area being sandy loam. About 95% of the total area of the state shows pH between 6.5 and 8.5 (40% of the area between pH 6.5 and 7.5 and 54% between 7.5 and 8.5) and electrical conductivity (EC) <0.8 dS m?1. Calcium carbonate (CaCO3) with <5% values represents 97% area of the state. The GIS-based maps indicate that irrespective of the agroclimatic variations, more than 90% of the soils showed low to medium soil organic carbon (OC) content and 50% low to medium (<22.4 kg P ha?1) available phosphorus (P) content with a marginal (7%) deficiency of potassium (K). The dominance of low to medium status of available P in these soils could be due to the mining of soil P by the rice–wheat cropping system practiced in the region. The intensively cultivated soils of Indian Punjab showed 11% of soil samples were low in zinc (Zn), 15% low in manganese (Mn), 2% low in copper (Cu), and 12% low in iron (Fe). Availability of micronutrients increased with increase in OC content and decreased with increase in sand content, pH, and CaCO3. GIS-based maps are effective in identifying hot spots, which need immediate attention and call for strategic planning for sustainable management.  相似文献   
2.
Raised beds have been proposed for rice–wheat (RW) cropping systems in the Indo-Gangetic Plains as a means of increasing irrigation water productivity, among many other potential benefits. Field experiments were carried out in Punjab, India, during 2002–2006 to compare irrigation water use and productivity of transplanted rice and drill-sown wheat on fresh and permanent beds and conventionally tilled flats.  相似文献   
3.
Press mud cake (PMC) is an important organic source available for land application in India. Adequate information regarding availability of nitrogen and phosphorous contained in PMC to rice–wheat (RW) cropping system is lacking. In field experiments conducted for 4 years to study the effect of PMC application to rice as N and P source in RW system, application of 60 kg N ha−1 along with PMC (5 t ha−1) produced grain yield of rice similar to that obtained with the 120 kg N ha−1 in unamended plots. In the following wheat, the residual effects of PMC applied to preceding rice were equal to 40 kg N and 13 kg P ha−1. Immobilization of soil and fertilizer N immediately after the application of PMC was observed in laboratory incubation. The net amount of N mineralized from the PMC ranged from 16% at 30 days to 43% at 60 days after incubation. Available P content in the soil amended with PMC increased by about 60% over the unamended control within 10 days of its application. The P balance for the no-PMC treatment receiving recommended dose of 26 kg P ha−1 year−1 was −13.5 kg P ha−1 year−1. The P balance was positive (+42.3 to 53.5 kg P ha−1 year−1) when PMC was applied to rice. Application of PMC increased total N, organic carbon, and available P contents in the soil.  相似文献   
4.
Precision Agriculture - Laser land levelling has contributed immensely to irrigation water saving to cope with declining ground water tables in South Asia. A topographic survey of a field is a...  相似文献   
5.
Poultry litter (PL) is an important nutrient source; however, no information is available regarding its value in supplying N and P in rice–wheat (RW) production. A three-year field study was conducted at Ludhiana, Punjab, India on a loamy sand soil to identify optimum combination of PL and N and P fertilizers for a sustainable RW production. The litter was applied to rice at 5 Mg ha−1 as a single application and supplemented with different rates of N. The residual effect of PL and the direct effects of the different combinations of N and P were studied in the following wheat. Nitrogen and P mineralization from PL was studied under controlled conditions in the laboratory, and macronutrient input–output balances were estimated from field results. About 46% of the N from PL was released after 60 days of incubation. The release of P from the PL occurred mainly during the initial 20 days after incubation, accounting for 15–17% of the total P. Combining PL with fertilizer N (40 kg ha−1) increased rice yield and nutrient uptake similar to what was obtained with the application of recommended fertilizer N (120 kg ha−1). In the following wheat, the residual effect of PL was equal to 30 kg N ha−1 and 13 kg P ha−1. After three annual cropping cycles and PL application, mean soil organic C increased by 17%, Olsen-P by 73%, and NH4OAc-extractable-K by 24%. Most treatments had positive P but negative K balances. About 11% of the net P balance was recovered from the soil as Olsen-P. The study showed that optimum N and P fertilizer doses for an RW system receiving 5 Mg ha−1 of PL are 40 kg N ha−1 for rice and 90 kg N + 13 kg P ha−1 for the following wheat. Safe and effective management of PL should be based on P balance, particularly when regular applications of PL are to be made in the RW system.  相似文献   
6.
The DSSAT-CSM-CERES-Wheat V4.0 model was calibrated for yield and irrigation scheduling of wheat with 2004–2005 data and validated with 13 independent data sets from experiments conducted during 2002–2006 at the Punjab Agricultural University (PAU) farm, Ludhiana, and in a farmer's field near PAU at Phillaur, Punjab, India. Subsequently, the validated model was used to estimate long-term mean and variability of potential yield (Yp), drainage, runoff, evapo-transpiration (ET), crop water productivity (CWP), and irrigation water productivity (IWP) of wheat cv. PBW343 using 36 years (1970–1971 to 2005–2006) of historical weather data from Ludhiana. Seven sowing dates in fortnightly intervals, ranging from early October to early January, and three irrigation scheduling methods [soil water deficit (SWD)-based, growth stage-based, and ET-based] were evaluated. For the SWD-based scheduling, irrigation management depth was set to 75 cm with irrigation scheduled when SWD reached 50% to replace 100% of the deficit. For growth stage-based scheduling, irrigation was applied either only once at one of the key growth stages [crown root initiation (CRI), booting, flowering, and grain filling], twice (two stages in various combinations), thrice (three stages in various combinations), or four times (all four stages). For ET-driven irrigation, irrigations were scheduled based on cumulative net ETo (ETo-rain) since the previous irrigation, for a range of net ETo (25, 75, 125, 150, and 175 mm). Five main irrigation schedules (SWD-based, ET-driven with irrigation applied after accumulation of either 75 or 125 mm of ETo, i.e., ET75 or ET125, and growth stage-based with irrigation applied at CRI plus booting, or at CRI plus booting plus flowering stage) were chosen for detailed analysis of yield, water balance, and CWP and IWP. Nitrogen was non-limiting in all the simulations.Mean Yp across 36 years ranged from 5.2 t ha−1 (10 October sowing) to 6.4 t ha−1 (10 November sowing), with yield variations due to seasonal weather greater than variations across sowing dates. Yields under different irrigation scheduling, CWP and IWP were highest for 10 November sowing. Yields and CWP were higher for SWD and ET75-based irrigations on both soils, but IWP was higher for ET75-based irrigation on sandy loam and for ET150-based irrigation on loam. Simulation results suggest that yields, CWP, and IWP of PBW343 would be highest for sowing between late October and mid-November in the Indian Punjab. It is recommended that sowing be done within this planting period and that irrigation be applied based on the atmospheric demand and soil water status and not on the growth stage. Despite the potential limitations recognised with simulation results, we can conclude that DSSAT-CSM-CERES-Wheat V4.0 is a useful decision support system to help farmers to optimally schedule and manage irrigation in wheat grown in coarse-textured soils under declining groundwater table situations of the Indian Punjab. Further, the validated model and the simulation results can also be extrapolated to other areas with similar climatic and soil environments in Asia where crop, soil, weather, and management data are available.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号