首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  6篇
植物保护   1篇
  2015年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.

Background, Aims, and Scope  

Data from the Elbe River and its tributaries indicate, despite extensive improvement in water quality during the last 15 years, that the respective sediment situation of many priority pollutants has not reached an acceptable level. For the coming decades, risks for downstream sites and stakeholders will persist, mainly due to secondary sources originating from historical pollution of soils and sediments in the catchment area. In practice, a catchment-wide assessment of historical contaminated soil and sediment should apply a three-step approach: (i) Identification of substances of concern (s.o.c.) and their classification into ’hazard classes of compounds’; (ii) identification of areas of concern (a.o.c.) and their classification into ‘hazard classes of sites’; (iii) identification of areas of risk (a.o.r.) and their assessment relative to each other with regard to the probability of polluting the sediments in the downstream reaches. The conversion of this concept has to consider the underlying philosophy of the EU Water Framework Directive, particularly with respect to the analysis and monitoring of priority substances in solid matrices. However, major deficiencies are still in the assessment and prognosis of resuspension processes, and potential approaches to fill this gap are described both in theory and from examples of the Elbe River.  相似文献   
2.
Botrytis calthae is a necrotrophic plant pathogen, closely related to the ubiquitous broad host range fungus Botrytis cinerea, but highly host specific. Botrytis isolates from lesions of Caltha palustris grown at different locations were classified with genetic markers as either B. calthae or Botrytis pseudocinerea, or less frequently as B. cinerea. A PCR‐based identification of B. calthae was developed. Seven haplotypes of B. calthae could be distinguished. Compared to B. cinerea, mycelium growth of B. calthae was similar, but conidiation less abundant, and sclerotia formation was only partially repressed by light. Conidia of B. calthae germinated more slowly, and showed a highly acidic optimum (pH 2·5) compared to B. cinerea conidia (pH 5·3). All B. calthae isolates were sensitive to common anti‐Botrytis fungicides, but showed partial resistance to the succinate dehydrogenase inhibitors boscalid, fluopyram and carboxin. Infection experiments revealed a weak capability of B. calthae to induce necrotic lesions on plants that are hosts for B. cinerea. On C. palustris leaves, B. calthae induced similar lesions to B. cinerea. These data provide a basis for comparative molecular investigation of the physiology and host specificity of B. calthae and closely related Botrytis species.  相似文献   
3.
Kern  U.  Westrich  B. 《Water, air, and soil pollution》1997,99(1-4):105-112
The sediment, budget of a reservoir on the Neckar River, Germany, was investigated by means of experimental and numerical methods. Field measurements of channel bathymetry show that. sedimentation and erosion occur primarily in the lower backwater-influenced section of the reservoir, which stores approximately 350,000 m3 of fine-grained deposits. Sediment load balances for two major storm events in Dec. 1993 and Apr. 1994 showed net erosion of 32,000 ±10,000 tonnes and 24,000 ± 5,000 tonnes of sediment, respectively. A balanced sediment budget, was found for a minor flood in Jan. 1995. In agreement with the field data, numerical simulation of sediment transport. over a period of 45 years demonstrates that the river reservoir served initially as a sediment trap from 1950 to 1978, and since then as a temporary storage basin for sediment.  相似文献   
4.
5.
6.
7.
Background, Aim and Scope   Riverine sediments store large quantities of hazardous contaminants, remaining a 'legacy of the past' world-wide. Natural events such as floods may cause the resuspension of polluted sediments and accordingly, the former immobilized contaminants might become bioavailable and toxic again. Hence, a comprehensive erosion risk assessment of contaminated sites is of crucial importance. The present study aimed to implement 'master-variables' for a reliable, easy-to-manage and economically more viable determination of stability in cohesive sediments. Materials and Methods: A wide range of physico-chemical (bulk density, water content, particle size, mineral composition, cation exchange capacity / CEC, total organic matter / TOC, liquid and plastic limits of a soil) and biological (macrofauna abundances, microalgal biomass and species composition, bacterial cell numbers, EPS fractions such as carbohydrates and proteins) properties were determined simultaneously over depth spanning the zone between 0-35 cm. The data were related to sediment stability, determined as the 'critical shear stress for mass erosion' in the SETEG (Stroemungskanal zur Ermittlung der tiefenabhaengigen Erosionsstabilitaet von Gewaessersedimenten) - flume. The investigations were done on natural sediments, thereby covering vertical (over depth), spatial (different study sites) and temporal (different seasons) aspects to ensure the transferability of the data. Here, first data originating from three contaminated reservoirs in the lock-regulated River Neckar / Germany are presented. Results: Comparison of the rather low critical shear stress values (resisting force of sediment, determined in SETEG) with the possibly occurring natural bottom shear stresses (attacking force, calculated for different hydraulic scenarios) at the three reservoirs indicated a severe risk of sediment erosion even under moderate hydraulic conditions and was not restricted to the surface. Critical shear stress was characterised by the following sediment properties of depth, grain size, CEC (Cation Exchange Capacity) and concentrations of TOC (Total Organic Carbon), proteins as well as carbohydrates (water- and resin-extractable). Firstly, biological stabilisation by extracellular polymeric substances (EPS) could be shown for riverine sediments, even over depth. Secondly, erosion resistance was determined by the inter-particles forces, an interplay of the biologically produced compounds constituting active surfaces and the binding capacity as well as charge densities of the sediments. The combined influence of sedimentological and biological properties on sediment stability over depth was assessed by PCA (Principal Component Analysis). Discussion: Hence, a better correlation coefficient between sediment stability and the master variables could be achieved (Main component II: Polymeric substances, R = 0.7, Main component III: Grain size, TOC, CEC, R = 0.9) compared to single correlations. Conclusions: The present paper revealed the combined influence of physico-chemical and biological properties on sediment stability over depth by simultaneous investigation and statistical evaluation. It can be shown, that inter-particle forces, determined by particles size classes, CEC, TOC and polymeric substances such as proteins and carbohydrates, affected sediment stability most. Thereby, the impact of biogenic sediment mediation on riverine sediment stabilisation became evident, even over depth, where mostly sedimentological parameters were considered as important before. Recommendations and Perspectives: The importance of a comprehensive risk assessment of contaminated riverine sites was again highlighted in the present study by the comparison of natural occurring bottom shear stresses with the determined sediment erosion resistance. If a realistic risk assessment is to be derived, the stabilizing potential of micro-organisms needs to be taken into account and the covariance patterns of biological and physico-chemical sediment properties have to be addressed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号