首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   30篇
  国内免费   1篇
林业   107篇
农学   6篇
基础科学   5篇
  131篇
综合类   32篇
农作物   10篇
水产渔业   12篇
畜牧兽医   73篇
园艺   6篇
植物保护   33篇
  2023年   7篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   8篇
  2018年   13篇
  2017年   10篇
  2016年   16篇
  2015年   9篇
  2014年   6篇
  2013年   19篇
  2012年   25篇
  2011年   21篇
  2010年   16篇
  2009年   22篇
  2008年   14篇
  2007年   21篇
  2006年   21篇
  2005年   17篇
  2004年   17篇
  2003年   19篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1990年   2篇
  1987年   4篇
  1984年   4篇
  1950年   3篇
  1941年   2篇
  1938年   4篇
  1929年   3篇
  1928年   2篇
  1927年   7篇
  1926年   2篇
  1925年   3篇
  1920年   2篇
  1919年   2篇
  1916年   3篇
  1913年   3篇
  1912年   2篇
  1906年   3篇
  1905年   6篇
  1901年   3篇
  1896年   3篇
  1864年   3篇
排序方式: 共有415条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The aim of this study was to evaluate the interaction between yield levels of nonleguminous crops and soil organic matter (SOM) under the specific conditions of organic and conventional farming, respectively, and to identify implications for SOM management in arable farming considering the farming system (organic vs. conventional). For that purpose, correlations between yield levels of nonlegume crops and actual SOM level (Corg, Nt, Chwe, Nhwe) as well as SOM‐level development were examined including primary data from selected treatments of seven long‐term field experiments in Germany and Switzerland. Yield levels of nonlegume crops were positively correlated with SOM levels, but the correlation was significant only under conditions of organic farming, and not with conventional farming treatments. While absolute SOM levels had a positive impact on yield levels of nonlegumes, the yield levels of nonlegumes and SOM‐level development over time correlated negatively. Due to an increased demand of N from SOM mineralization, higher yield levels of nonlegumes obviously indicate an increased demand for OM supply to maintain SOM levels. Since this observation is highly significant for farming without mineral‐N fertilization but not for farming with such fertilization, we conclude that the demand of SOM‐level maintenance or enhancement and thus adequate SOM management is highly relevant for crop production in organic farming both from an agronomical and ecological point of view. Under conventional management, the agronomic relevance of SOM with regard to nutrient supply is much lower than under organic management. However, it has to be considered that we excluded other possible benefits of SOM in our survey that may be highly relevant for conventional farming as well.  相似文献   
5.
Abstract

The influence of regional soil distribution and land use on discharge formation in the “Stettiner Haff” catchment (8,456 km2) was investigated. The model ABIMO was used to calculate mean discharge for a long period (1961 – 1990) in consideration of regional differences in hydrological site conditions and soil heterogeneity. The highest discharge was found on settlement areas (276 mm a?1), on devastated plots (319 mm a?1) and on the non-hydromorphic agriculturally used sandy soils (214 mm a?1). Due to their small size these sub-areas were found to influence regional discharge for a limited extent only. On loam and clay soils only about 100 mm a?1 of discharge was formed. However, this share proved to be most important for the height of regional discharge because of the high area proportion in the region. Mineral soils of comparable parent material produce lower discharge under hydromorphic conditions than under non-hydromorphic conditions. With increasing clay content of the soils these differences decreased. The agriculturally used areas were found to be most important for the region's water discharge. They accounted for 83% of the discharge, i.e. they originated 119 mm a?1 on average. At forest sites, the discharge height was about 52 mm a?1. Sites close to groundwater table (groundwater level <1 m) proved to act as depletive areas.  相似文献   
6.
Changes in soil sodicity-salinity parameters are one of the most characteristic alterations after treated sewage effluent (TSE) irrigation in agro-systems. Considering the importance of these parameters for agricultural management, as well as the economical value of sugarcane for Brazil, the present study aimed at evaluating effects on soil sodicity and salinity under tropical conditions over 16 months of TSE irrigation in a sugarcane plantation at Lins, São Paulo State, Brazil. Soil samplings were carried out in February 2005 (before planting), December 2005 (after 8 months of TSE irrigation) and September 2006 (after 16 months of TSE irrigation) following a complete block design with four treatments and four replicates. Treatments consisted of: (i) control, without TSE irrigation; (ii) T100, T150 and T200, with TSE irrigation supplying 100% (0% surplus, total of 2524 mm), 150% (50% surplus, total of 3832 mm) and 200% (100% surplus, total of 5092 mm) of crop water demand, respectively. Compared to initial soil conditions, at the end of the experiment increases of exchangeable sodium (from 2.4 to 5.9 mmolc kg−1), exchangeable sodium percentage (ESP) (from 8 to 18%), soluble Na (from 1.4 to 4.7 mmol L−1) and sodium adsorption ratio (SAR) of soil solution (from 3.6 to 12.6 (mmol L−1)0.5) were found in the soil profile (0-100 cm) as an average for the irrigated plots due to high SAR of TSE. Associated with the increments were mostly significant increases in clay dispersion rates at depths 0-10, 10-20 and 20-40 cm. Electrical conductivity (EC) of soil solution increased during the TSE irrigation period whereas at the end of the experiment, after short term discontinuation of irrigation and harvest, EC in the topsoil (0-10 and 10-20 cm) decreased compared to the previous samplings. Moreover, despite increasing sodicity over time mainly insignificant differences within the different irrigated treatments were found in December 2005 and September 2006. This suggests that independent of varying irrigation amounts the increasing soil sodicity over time were rather caused by the continuous use of TSE than by its quantity applied. Moreover, also plant productivity showed no significant differences within the TSE irrigated plots. The study indicates that monitoring as well as remediation of soil after TSE irrigation is required for a sustainable TSE use in order to maintain agricultural quality parameters.  相似文献   
7.
1 The Problem  One of the major problems facing risk assessment at polluted industrial sites and military bases is subsurface contamination by non-aqueous phase-liquids (NAPLs), since tracing the extent of a NAPL plume using conventional methods (drive point profiling) is usually associated with difficulties. In an effort to trace subsurface contamination as precisely as possible, monitoring points are placed in the area that might be affected by contaminants, and groundwater and soil samples are taken to the laboratory for analysis. However, the final number of monitoring points is hardly ever sufficient for distinctive contamination mapping, and this may ultimately result in an unsuitable remediation action being taken. 2 Objectives  To obtain a more detailed image of a subsurface NAPL plume and, hence, to facilitate remediation measures that are best suited for the site in question, a denser network of monitoring points is desirable. The aim of the investigation described in this paper was therefore to develop a new detection method for subsurface NAPL contamination, which is based on an easily accessibleindicator for NAPLs rather than on the analysis of soil and groundwater samples taken at the site. Based on the good solubility of radon in NAPLs, the idea was put forward that subsurface NAPL contamination should have an influence on the natural radon concentration of the soil gas. Provided this effect is significant, it would be possible to carry out a straightforward radon survey on an appropriate sampling grid covering the suspected site and thus enabling the NAPL contamination to be detected by the localization of anomalous low radon concentrations in the soil. The overall aim of the investigation was to assess the general suitability of the soil-gas radon concentration as an indirect tracer for NAPL contamination in the ground. 3 Methods  The partitioning coefficient KNAPL/air is one of the most influential parameters governing the decrease of the radon concentration in the soil gas in the presence of a subsurface NAPL contamination. Since NAPL mixtures such as gasoline, diesel fuel and paraffin are among the most important NAPLs regarding remediation activities, laboratory experiments were performed to determine the radon-partitioning coefficient for these three NAPL mixtures. Field experiments were carried out as well. The aim of the field experiments was to test the use of the soil-gas radon concentration as a tracer for NAPL contamination on-site. For the field experiments, each site was covered with a suitable grid of soil gas sampling points. Finally, the lateral radon distribution pattern achieved on each of the sites was compared to the respective findings of the earlier research performed by conventional means. 4 Results and Discussion  The results of the laboratory experiments clearly show a very strong affinity of radon to the NAPL mixtures examined. The partitioning coefficients achieved correspond to those published for pure NAPLs (Clever 1979) and are thus in the expected range. The results of the field experiments showed that the minimum radon concentrations detected match the respective NAPL plumes traced previously. 5 Conclusions  Both the results of the lab experiments and the on-site findings demonstrate that the soil-gas radon concentration can be used as an indicator for subsurface NAPL contamination. The investigation showed that NAPL-contaminated soil volumes give rise to anomalous low soil-gas radon concentrations in the close vicinity of the contamination. The reason for this decrease in the soil-gas radon concentration is the good solubility of radon in NAPLs, which enables the NAPLs to accumulate and ‘trap’ part of the radon available in the soil pores. 6 Recommendations and Outlook  Further research is required into contamination with rather volatile NAPLs such as BTEX. Further research is also needed to examine whether it is possible to not only localize a NAPL plume, but also to obtain some quantitative information about the subsurface NAPL contamination. The authors also believe that additional investigations should be carried out to study the ability of the method to not just localize a NAPL contamination, but also to monitor on-site, clean-up measures.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号