首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
农学   1篇
  4篇
农作物   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Monitoring chemical and physical changes during thermal flavor generation   总被引:1,自引:0,他引:1  
On-line techniques were developed to monitor chemical and physical changes occurring during the heating of skim milk powder (SMP). Atmospheric pressure chemical ionization mass spectrometry (APCIMS) followed the generation and release of volatile compounds from SMP in a packed-bed reactor. Operating conditions were optimized to avoid condensation of high boiling compounds such as maltol, and the system was highly reproducible (CV < 7%). Differential scanning calorimetry (DSC) of SMP identified a potential glass transition at an onset temperature of 67.9 degrees C and a series of exothermic events that were related to different stages of the Maillard reaction. No lactose crystallization was found after heating. Using a heated stage reflectance FTIR device, spectra were obtained at different temperatures. Analysis of the data showed a correlation between the intensity ratio at wavenumbers 1017 and 1064 cm(-1) and the glass transition measured by DSC. This FTIR system was not sensitive enough to detect Maillard intermediates. Combining data from the three techniques provides a fuller picture of the physical changes during the Maillard reaction and their effects on the chemical reactions.  相似文献   
2.
Summary Genetic transformation is vital to the transfer of novel genes into crop plants as well as to the emerging area of functional genomics. However, the successful genetic transformation of wheat still remains time consuming and genotype dependent. This paper updates the progress made in last 3 years towards developing a robust genetic transformation system for wheat. Agrobacterium-mediated wheat transformation offers advantages such as single-copy gene insertion, minimal rearrangement of DNA, low cost and comparatively high efficiency. The reported recent developments in wheat transformation will lead to increased efficiency of wheat breeding programs. The most promising recent progress is in the development of drought-tolerant wheat, since water stress continues to be a major limiting factor hindering world wheat productivity under adverse hot and dry weather conditions.  相似文献   
3.
The effect of gluten on the retrogradation of wheat starch   总被引:1,自引:0,他引:1  
The retrogradation of amylopectin in a wheat starch and a wheat starch/gluten (10:1) blend prepared by extrusion and containing 34% water (wet weight basis) was studied using X-ray diffraction, differential scanning calorimetry and NMR relaxometry during storage at constant water content and temperature (25 °C). For both samples, amylopectin ‘fully’ retrograded after 2–3 days storage, i.e. the different parameters monitored with time to follow the retrogradation had reached their maximum value, and crystallised predominantly into the A polymorph. Under the experimental conditions used, there was no evidence of any significant effects of the presence of gluten on the kinetics, extent or polymorphism of amylopectin retrogradation.  相似文献   
4.
The retrogradation of extruded starches from three different botanical sources was studied in concentrated conditions (34 +/- 1% water) at 25 degrees C using differential scanning calorimetry (DSC) and isothermal calorimetry, Fourier transform infrared spectroscopy (FTIR), and wide-angle X-ray scattering. Potato starch showed the highest rate of retrogradation (approximately 0.17 h(-1)) followed by waxy maize (approximately 0.12 h(-1)), while the retrogradation of wheat starch was the slowest (approximately 0.05 h(-1)). In addition to the kinetics, the extent of molecular order in the retrograded samples was studied in detail in terms of "short-range" (helical) and "long-range" (crystalline) distance scales. The amylopectin crystallinity indices were essentially the same (approximately 47-51% amylopectin basis) for the three starches. However, significant differences were found in the enthalpy of melting measured by DSC after "full" retrogradation (potato, 11.6 +/- 0.7; waxy maize, 9.0 +/- 0.5; and wheat, 6.1 +/- 0.3 J/g of amylopectin). The degree of short-range molecular order in the retrograded state determined by FTIR was waxy maize > potato > wheat. The effect of amylopectin average chain length and the polymorphism of the crystalline phase were taken into account to explain the differences in the retrogradation enthalpies.  相似文献   
5.
Starch was isolated from banana starch and the retrogradation phenomenon was studied using diverse techniques, including an enzymatic measurement. Wide-angle X-ray scattering (WAXS) showed that the sample stored for 7 h presented small peaks and when the storage time increased the peaks increased in intensity. The type of diffraction pattern found in banana extrudates is typical of the A-type crystal polymorph. The crystallinity index from the diffractograms, showed a plateau after approximately 20 h of storage. The short-range order measurement with Fourier transform infrared (FTIR) spectroscopy showed that banana starch retrogradation reached a maximum value at approximately 11 h of storage, a value that agrees with the results obtained with differential scanning calorimetry (DSC), because the maximum enthalpy value (approximately 5 J/g) was calculated in the stored sample for 8 h, without changes in the stored samples for more time. Retrograded resistant starch values did not change after 12 h of storage, obtaining the maximum starch retrogradation level. FTIR, DSC, and the enzymatic technique showed the changes at the molecular level in starch during storage; in the case of WAXS, they determine the long-range order that explains the differences found in the starch retrogradation pattern measurement in banana starch.  相似文献   
6.
Starches were isolated from nonconventional sources (banana, mango, and okenia) and their characteristics were examined using polarized light microscopy, X-ray diffraction pattern, Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). Banana starch granules were of an ellipsoidal shape with size between approximately 8 and 20 microm; okenia had the smallest granule size, between approximately 2 and 5 microm. The three starches showed the Maltese cross, indicative of an intact granule structure. Okenia and mango starches had the A-type X-ray diffraction pattern, common to native cereal starches, whereas banana starch showed a mixture between A- and B-type pattern. Banana starch had the highest temperature (77.6 degrees C) and enthalpy (23.4 J/g) of gelatinization in excess water conditions; okenia had the lowest temperature (71.2 degrees C) and enthalpy (15 J/g), which may be related to the X-ray diffraction pattern and its small granule size. Both the okenia and mango starches had a higher molar mass and gyration radius than banana starch, which may be related to the differences determined in their crystalline structures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号