首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
林业   2篇
  8篇
畜牧兽医   1篇
植物保护   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2001年   1篇
  1993年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Habitat degradation leads to small and fragmented populations, lower genetic variability and fertility overtime. Assisted reproductive techniques represent important tools to cope with the dramatic loss of biodiversity. Fallow deer (Dama dama), beyond its high commercial value and wide distribution, may represent the most suitable model to study endangered cervids. In this study, oocytes were recovered post-mortem from fallow deer during the breeding and no breeding seasons and were in vitro matured (IVM). The ability of cryopreserved thawed sperm samples recovered by electroejaculation from four adult males was tested by in vitro fertilization of IVM oocytes. The number of oocytes collected per ovary did significantly vary across seasons from 6.2 ± 0.92 during breeding season to 10.4 ± 1.26 during no breeding season (p = .006). Oocytes collected during the breeding season showed higher in vitro fertilization rate compared to the no breeding season (p = .045). However, no embryos reached the blastocyst stage. Semen samples obtained by electroejaculation were successfully cryopreserved, although the cryopreservation process negatively affected most kinetic parameters, mainly at 2 hr post-thawing. Moreover, the percentage of rapid spermatozoa significantly decreased between fresh samples and at 2 hr post-thawing, whereas the percentage of slow spermatozoa increased across the same period (p < .05). Our study provides the logistic steps for the application of assisted reproductive techniques in fallow deer and might be of great interest for genetic resource bank planning.  相似文献   
2.
Biology and Fertility of Soils - Temporal nitrogen (N) availability in fertilized rice paddies is the result of a balance of processes, mainly the gross rates of N mineralization, microbial and...  相似文献   
3.
The effect of a lack of snow cover in winter was investigated in two soils, beneath larch and meadow, in NW Italy (Vallée d'Aoste Region). During the late 1980s and early 1990s and 2000s, this region experienced extreme climatic conditions including a low snow pack and lack of snow cover for extended periods with important effects on soil temperature and nutrient dynamics. In particular, the mountain belt in the Alps may be extremely sensitive to these phenomena, in relation to the rise in average snowline projected under a warmer global climate. The study area is located at an elevation of 1450 m asl in the Italian Alps (Mont Mars Natural Reserve). During the winter 2003/04, snow was continuously removed in a treatment plot while a reference plot was maintained undisturbed. Soil temperature was measured at 10 cm depth by data loggers (UTL‐1). Soil N transformations in the topsoil (10 cm depth) were determined by the buried‐bag technique. The removal of the snow cover caused a significant decrease in soil temperature, related to concurrent decreases in air temperature. The lowest soil temperatures recorded were –4.3°C and –4.5°C beneath larch and meadow, respectively, on January 31, 2004. Soil temperature in the undisturbed plots was maintained above the freezing point when the snow cover was present. The snow removal caused significant increases in net ammonification in both soils and net nitrification only under meadow, but did not affect microbial biomass N which decreased in both plots. Our results suggest that the lower temperature reached in the plot without snow favored the production of inorganic N by physical rather than microbial degradation of soil organic matter (SOM). Soil freezing could enhance soil‐aggregate disruption releasing physically protected SOM and fragmentation of OM itself.  相似文献   
4.
The stability and activity of phytases in the soil environment may be affected by their sorption on soil particle surfaces and by substrate availability with important consequences for P cycling and nutrient bioavailability. This work evaluated the interaction of phytases with goethite, haematite, kaolinite, montmorillonite and two oxisol clays and investigated how this interaction is affected when myo-inositol hexakisphosphate (InsP6) was sorbed on the mineral surfaces. phyA histidine acid phosphatases of fungal origin were used and their ability to release orthophosphate from the InsP6-saturated minerals was evaluated.The phytases showed a high affinity for the mineral surfaces, with a loss of enzyme activity generally being observed over 24 h (up to 95% of the initially added activity). The loss of phytase activity was dependent on the type of mineral, with kaolinite and montmorillonite showing the greatest effect. Retention of enzyme activity was higher with the two oxisol clays, suggesting that the heterogeneous nature of clay surfaces and the presence of endogenous organic matter may limit the inhibition caused by interaction with minerals.In the presence of mineral surfaces saturated with InsP6, the partitioning of enzyme activity between the solution and the solid phase was shifted more towards the solution phase, presumably due to the mineral surfaces being occupied by the substrate. However, phytases were not able to release any orthophosphate directly from InsP6-saturated goethite and haematite, and hydrolysed InsP6 that was desorbed from haematite. Conversely, in the case of kaolinite and of the oxisol clays, where desorption was limited, phytases appeared to be able to hydrolyse a small fraction of the InsP6 adsorbed on the surfaces. These findings suggest that the bioavailability of P from inositol phosphates is governed to a large extent by the mineral composition of soil and by competitive effects for sorption on reactive surfaces among inositol phosphates and phytases.  相似文献   
5.
In podzolic B horizons illuviated Al, Fe and organic matter (OM) increase with the ongoing of the pedogenic process. Depending on OM load on mineral surfaces, modifications of the soil surface properties are expected and may influence OM stabilisation. The proportion of labile organic pools should thus vary depending on the type of podzolic horizon. In this work, we selected B horizons at increasing intensity of podzolisation, evaluated the labile OM pools through oxidation with 2 % NaClO and characterised surface properties with N2 and phosphate sorption. Before and after oxidation, we assessed the NaOH-extractable OM fractions. Oxidation was more effective on the least polar organic compounds and led to an increase in the fulvic to humic acid ratio. Specific surface area (SSA) increased after oxidation only in the least podzolised horizons, while selectively preserved OM induced a decrease in SSA in the more developed Bs, Bsm and Bhs. Phosphate sorption induced a release of OM and always decreased after oxidation, although variations in P affinity for the surfaces were observed. The effect of oxidation on surface parameters pointed to a specific association between organics and minerals that changed during soil development. At the very beginning of podzolisation, the dominant forms seemed related to organo-metallic complexes with little interaction with surfaces. With Bs development, weak interactions between mineral surfaces and OM appeared, while at a later stage OM differentiated into bulky structures and tightly bound, rigid ones, with extremely low N2 accessibility. The latter were not sensitive to low concentration NaClO while the former were easily oxidised.  相似文献   
6.
Vineyard management practices to enhance soil conservation principally focus on increasing carbon (C) input, whereas mitigating impacts of disturbance through reduced tillage has been rarely considered. Furthermore, information is lacking on the effects of soil management practices adopted in the under-vine zone on soil conservation. In this work, we evaluated the long-term effects (22 years) of alley with a sown cover crop and no-tillage (S + NT), alley with a sown cover crop and tillage (S + T), and under-vine zone with no vegetation and tillage (UV) on soil organic matter (SOM), microbial activity, aggregate stability, and their mutual interactions in a California vineyard in USA. Vegetation biomass, microbial biomass and activity, organic C and nitrogen (N) pools, and SOM size fractionation and aggregate stability were analysed. Soil characteristics only partially reflected the differences in vegetation biomass input. Organic C and N pools and microbial biomass/activity in S + NT were higher than those in S + T, while the values in UV were intermediate between the other two treatments. Furthermore, S + NT also exhibited higher particulate organic matter C in soil. No differences were found in POM C between S + T and UV, but the POM fraction in S + T was characterized by fresher material. Aggregate stability was decreased in the order: S + NT > UV > S + T. Tillage, even if shallow and performed infrequently, had a negative effect on organic C and N pools and aggregate stability. Consequently, the combination of a sown cover crop and reduced tillage still limited SOM accumulation and reduced aggregate stability in the surface soil layer of vineyards, suggesting relatively lower resistance of soils to erosion compared to no-till systems.  相似文献   
7.
This paper describes a method for the determination of fenoxaprop ethyl and fenoxaprop residues in four soil types using two extraction procedures: extraction with 0.1 M hydrochloric acid/methanol, partitioning with dichloromethane and extraction with ethyl acetate. The extracts were purified on florisil or alumina cartridge. The analyses were performed by reverse phase HPLC with UV detection at 280 nm. The best results in terms of recovery, clean-up efficiency and independence of soil characteristics were obtained with the combination ethyl acetate extraction alumina clean-up. Under these conditions, the recoveries were higher than 70 % and the detection limit was 0.02 mg kg?1 soil.  相似文献   
8.
Soil aggregation and organic matter (OM) conservation are important in the prevention of land degradation. Aggregation processes and OM turnover influence each other and depend on the characteristics of both minerals and organic pools. We assessed the relative importance of the organic and mineral phases at the macroaggregate and colloidal scale in two soils (CHL and SRP, chlorite and serpentine‐rich, respectively) where Mg‐silicates dominated, by incubating them with a relatively degraded and oxidized organic fraction, that is the humic acids (HAs) extracted from the organic horizons of both CHL and SRP. The HA from SRP were more aromatic and richer in phenolic groups, whereas HA from CHL were N‐richer, more aliphatic and richer in carboxyl groups. The SRP soil formed larger amounts of macroaggregates, more stable than in CHL. At the colloidal scale, SRP was more flocculated and clay had a lower electrophoretic mobility than CHL. HA enhanced aggregate formation in both samples but improved aggregate stability only in CHL. In CHL, slight differences in electrophoretic mobility were visible, while in SRP, differences were more pronounced, with a point of zero charge at lower pH and larger hydrodynamic diameter. The abundance of Mg in SRP may have favoured the formation of weaker outer‐sphere interactions and the release of clay‐HA associations upon water dispersion, while in CHL Ca formed more stable bonds with HA. In SRP, ligand exchange reactions can be ruled out, conversely to the dominant bonding mechanism occurring in Al‐silicate dominated soils, with important consequences on the release of OM‐loaded clay particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
9.
Eucalyptus stands in semi?arid areas may contribute to enhance carbon (C) stocks in both biomass and soil. However, the limited information available is mainly focused on short?rotation plantations. In this study, the above? and below?ground C pools in five 50?year?old Eucalyptus camaldulensis Dehnh. stands planted on Miocenic evaporitic deposits in Sicily, Italy, with a xeric and thermic pedoclimate, were measured. Above?ground biomass was determined by partitioning and weighing branches, stem and leaves. Below?ground C pools included the determination of litter, root biomass, and soil organic and inorganic C. In terms of the above?ground biomass, the E. camaldulensis stand accumulated on average 116?Mg ha?1 corresponding to 55?Mg C ha?1. Below?ground biomass consisted mainly of larger roots, followed by fine and medium roots (33?Mg ha?1 corresponding to 14?Mg C ha?1). Litter accumulation on the soil surface accounted for 13?Mg ha?1 corresponding to 5?Mg C ha?1. The amount of C stored in soil was 554?Mg C ha?1, of which 75% was in organic form. Although E. camaldulensis is planted extensively throughout the Southern Hemisphere and tropics where it is managed over short rotations (c. 2–4 years), the results obtained from this study make this species important in terms of future afforestation planning for longer rotations due to its potential to sequester C, particularly in the below?ground components.  相似文献   
10.
From Astragalus peregrinus, four cycloartane-type saponins have been isolated and their structures elucidated by spectral means as 20(R),24(S)-epoxy-9β,19-cyclolanostane-3β,6α,16β,25-tetrol 3-O-β- -glucopyranoside (1), 20(R),24(S)-epoxy-9β,19-cyclolanostane-3β,6α,16β,25-tetrol 3-O-α- -rhamnopyranosyl-(1→4)-β- -glucopyranoside (2), 20(R),24(S)-epoxy-9β,19-cyclolanostane-3β,6α,16β,25-tetrol 3-O-α- -rhamnopyranosyl-(1→2)-β- -glucopyranoside (3) and 20(R),25-epoxy-9β,19-cyclolanostane-3β,6α,16β,24(S)-tetrol (24-O-acetyl)- 3-O-α- -rhamnopyranosyl-(1→2)-(6′-O-acetyl)-β- -glucopyranoside (4). Compounds 2 and 3 showed to stimulate the proliferation of mouse splenocytes and were not significantly cytotoxic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号