首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
林业   2篇
  2篇
植物保护   2篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  1998年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The steryl ferulate contents of rye and wheat grains and their milling fractions were analyzed using a reversed-phase high-performance liquid chromatographic (HPLC) method. HPLC-mass spectrometry was used for identification. In addition, steryl ferulates of some selected milling byproducts were determined. The total steryl ferulate contents of rye and wheat grains were 6.0 and 6.3 mg/100 g, respectively. Uneven distribution of steryl ferulates in the grains led to considerable differences in the milling products; their steryl ferulate contents ranged from trace amounts in flours with low ash content to 20 and 34 mg/100 g in rye and wheat brans, respectively. Campestanyl ferulate and sitostanyl ferulate were the main components, followed by campesteryl ferulate and sitosteryl ferulate, whereas sitosterol was the main component in total sterols. Among the other samples, a byproduct of rice milling (pearling dust) was the best source of steryl ferulates, its total steryl ferulate content being 119 mg/100 g, whereas no measurable amounts of steryl ferulates were measured in oat bran or pearling dust of barley. The results indicated that rye and wheat and especially their bran fractions are comparable to corn as steryl ferulate sources.  相似文献   
2.
Rhizoctonia solani root-rot is a major soilborne disease causing growth and yield depression. The ability of Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI to suppress this soilborne disease in tomato was assessed by comparing the shoot and root growth of plants infested with R. solani 1556 when protected or not by these beneficial strains. The epiphytic and parasitic growth of the pathogenic R. solani 1556 was compared in the presence and absence of the biocontrol agents by microscopical observations allowing the quantification of roots with hyphae appressed to epidermal cells (epiphytic growth) and of roots with intraradical infection (parasitic growth). The root architecture of the tomato plants under the different experimental conditions was further characterized by measuring total root length, mean root diameter, number of root tips and by calculating degree of root branching. G. mosseae BEG12 and P. fluorescens A6RI fully overcame the growth depression caused by R. solani 1556. This disease suppression was associated with a significant decrease of the epiphytic and parasitic growth of the pathogen together with an increase of root length and of the number of root tips of inoculated tomato plants. The combined effects of G. mosseae BEG12 and P. fluorescens A6RI on pathogen growth and on root morphogenesis are suggested to be involved in the efficient disease suppression.  相似文献   
3.
Phenolic compounds from the lingonberry (Vaccinium vitis-idaea) were identified using LC-TOFMS, LC-MS/MS, and NMR experiments. The compounds were extracted from the plant material using methanol in an ultrasonicator and further isolated and purified using solid-phase extraction and preparative liquid chromatographic techniques. A total of 28 phenolic compounds were at least tentatively identified, including flavonols, anthocyanidins, catechins and their glycosides, and different caffeoyl and ferulic acid conjugates. This is apparently the first report of coumaroyl-hexose-hydroxyphenol, caffeoyl-hexose-hydroxyphenol, coumaroyl-hexose-hydroxyphenol, quercetin-3-O-alpha-arabinofuranoside, kaempferol-pentoside, and kaempferol-deoxyhexoside in the plant, and the flavonol acylglycosides quercetin-3-O-[4' '-(3-hydroxy-3-methylglutaroyl)]-alpha-rhamnose and kaempferol-3-O-[4' '-(3-hydroxy-3-methylglutaroyl)]-alpha-rhamnose are presented here for the first time ever. In addition, more detailed structure in comparison to earlier reports is described for some compounds previously known to exist in lingonberry.  相似文献   
4.
We investigated effects of nutrient availability on shoot structure and light-interception efficiency based on data from control (C) and irrigated + fertilized (IL) trees of Norway spruce (Picea abies (L.) Karst.). The sampling of 1-year-old shoots was designed to cover the variation in canopy exposure within the live crown zone, where current-year shoots were still found. Canopy openness was used as a measure of light availability at the shoot's position. Openness values for the sample shoots ranged from 0.02 to 0.77 on the IL plot, and from 0.10 to 0.96 on the C plot. Among needle dimensions, needle width increased most with canopy openness. At fixed canopy openness, needle width was larger, and the ratio of needle thickness to width was smaller in IL trees than in C trees. Specific needle area (SNA) and the ratio of shoot silhouette area to total needle area (STAR) decreased with canopy openness, so that the combined effect was a threefold decrease in the ratio of shoot silhouette area to unit dry mass (SMR = STAR x SNA) along the studied range of openness values. This means that the light-interception efficiency of shoots per unit needle dry mass was three times higher for the most shaded shoots than for sun shoots. A test of the effect of fertilization on the relationships of SNA, STAR and SMR indicated statistically significant differences in both slope and intercept for SNA and STAR, and in the intercept for SMR. However, the differences partly cancelled each other so that, at medium values of canopy openness, differences between treatments in predicted SNA, STAR and SMR were small. At 0.5 canopy openness, predicted STAR of IL shoots was 6.1% larger than STAR of C shoots, but SMR of IL shoots was 10% smaller than that of C shoots. The results suggest that light-interception efficiency per unit needle area or mass of the shoots is not greatly affected by fertilization.  相似文献   
5.
We studied the effects of variation in shoot structure and needle morphology on the distributions of light and nitrogen within a Pacific silver fir (Abies amabilis (Dougl.) Forbes) canopy. Specifically, we investigated the role of morphological shade acclimation in the determination of resource use efficiency, which is claimed to be optimal when the distribution of nitrogen within the canopy is directly proportional to the distribution of intercepted photosynthetically active radiation (PAR). Shoots were collected from different heights in the crowns of trees representing four different size classes. A new method was developed to estimate seasonal light interceptance (SLI, intercepted PAR per unit needle area) of the shoots using a model for the directional distribution of above-canopy PAR, measurements of shoot silhouette area and canopy gap fraction in different directions. The ratio SLI/SLI(o), where the reference value SLI(o) represents the seasonal light interceptance of a spherical surface at the shoot location, was used to quantify the efficiency of light capture by a shoot. The ratio SLI/SLI(o) doubled from the top to the bottom of the canopy, mainly as a result of smaller internal shading in shade shoots than in sun shoots. Increased light-capturing efficiency of shade shoots implies that the difference in intercepted light by sun shoots versus shade shoots is much less than the decrease in available light from the upper to the lower canopy. For example, SLI of the five most sunlit shoots was only about 20 times greater than the SLI of the five most shaded shoots, whereas SLI(o) was 40 times greater for sun shoots than for shade shoots. Nitrogen content per unit needle area was about three times higher in sun needles than in shade needles. This variation, however, was not enough to produce proportionality between the amounts of nitrogen and intercepted PAR throughout the canopy.  相似文献   
6.
Bilberry (Vaccinium myrtillus) represents one of the richest flavonoid sources among plants. Flavonoids play variable, species-dependent roles in plant defences. In bilberry, flavonoid metabolism is activated in response to solar radiation but not against mechanical injury. In this paper, the defence reaction and biosynthesis of phenolic compounds of bilberry was studied after infection by a fungal endophyte (Paraphaeosphaeria sp.) and a pathogen (Botrytis cinerea). The defence response of bilberry was faster against the endophyte than the pathogen. All flavonoid biosynthesis genes tested were activated by each infection. Biosynthesis and accumulation of phenolic acids, flavan-3-ols and oligomeric proanthocyanidins were clearly elevated in both infected samples. Infection by the pathogen promoted specifically accumulation of epigallocatechin, quercetin-3-glucoside, quercetin-3-O-α-rhamnoside, quercetin-3-O-(4”-HMG)-R-rhamnoside, chlorogenic acid and coumaroyl quinic acid. The endophyte-infected plants had a higher content of quercetin-3-glucuronide and coumaroyl iridoid. Therefore, accumulation of individual phenolic compounds could be specific for each infection. Quantity of insoluble proanthocyanidins was the highest in control plants, suggesting that they might act as storage compounds and become activated by degradation upon infection.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号