首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  2011年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Constructed vertical macrophyte systems, for nitrogen removal from oil refinery wastewater, were investigated. Detailed studies were carried out in laboratory columns (diameter, 0.06 m; depth, 0.5 m; operating volume, 0.6 L) planted with common reed, Phragmites australis. Through a vertical flow format, collected oil refinery wastewater was supplied directly to the columns. Wastewater quality varied through the experimental period with initial ammonia concentrations ranging from 3 to 20 mg N L-1. Effective ammonia removal was obtained for the planted columns with a hydraulic detention time of 5 hr. Removal efficiencies above 90% was obtained for high (above 6 mg N L-1) ammonia inflow concentrations. A satisfactory ammonia removal was obtained at shorter detention times for the low initial concentrations. Longer detention times also provided organic nitrogen removal. Recirculation of the flow, which provides the same total detention time but a higher hydraulic loading, provides the possibility to adjust the flow rate and the inflow ammonia concentration with detention time to achieve a target outflow concentration.  相似文献   
2.
Four different parameter-rich process-based models of forest biogeochemistry were analysed in a Bayesian framework consisting of three operations: (1) Model calibration, (2) Model comparison, (3) Analysis of model-data mismatch.Data were available for four output variables common to the models: soil water content and emissions of N2O, NO and CO2. All datasets consisted of time series of daily measurements. Monthly averages and quantiles of the annual frequency distributions of daily emission rates were calculated for comparison with equivalent model outputs. This use of the data at model-appropriate temporal scale, together with the choice of heavy-tailed likelihood functions that accounted for data uncertainty through random and systematic errors, helped prevent asymptotic collapse of the parameter distributions in the calibration.Model behaviour and how it was affected by calibration was analysed by quantifying the normalised RMSE and r2 for the different output variables, and by decomposition of the MSE into contributions from bias, phase shift and variance error. The simplest model, BASFOR, seemed to underestimate the temporal variance of nitrogenous emissions even after calibration. The model of intermediate complexity, DAYCENT, simulated the time series well but with large phase shift. COUP and MoBiLE-DNDC were able to remove most bias through calibration.The Bayesian framework was shown to be effective in improving the parameterisation of the models, quantifying the uncertainties in parameters and outputs, and evaluating the different models. The analysis showed that there remain patterns in the data - in particular infrequent events of very high nitrogenous emission rate - that are unexplained by any of the selected forest models and that this is unlikely to be due to incorrect model parameterisation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号