首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
林业   5篇
  3篇
  2022年   1篇
  2021年   2篇
  2017年   1篇
  2014年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Freezing and thawing influence many physical, chemical and biological processes in soils, including the production of trace gases. We studied the effects of freezing and thawing on three soils, one sandy, one silty and one loamy, on the emissions of N2O and CO2. We also studied the effect of varying the water content, expressed as the percentage of the water‐filled pore space (WFPS). Emissions of N2O during thawing decreased in the order 64% > 55% > 42% WFPS, which suggests that the retardation of the denitrification was more pronounced than the acceleration of the nitrification with increasing oxygen concentration in the soil. However, emissions of N2O at 76% WFPS were less than at 55% WFPS, which might be caused by an increased ratio of N2/N2O in the very moist conditions. The emission of CO2 was related to the soil water, with the smallest emissions at 76% WFPS and largest at 42% WFPS. The emissions of CO2 during thawing exceeded the initial CO2 emissions before the soils were frozen, which suggests that the supply of nutrients was increased by freezing. Differences in soil texture had no marked effect on the N2O emissions during thawing. The duration of freezing, however, did affect the emissions from all three soils. Freezing the soil for less than 1 day had negligible effects, but freezing for longer caused concomitant increases in emissions. Evidently the duration of freezing and soil water content have important effects on the emission of N2O, whereas the effects of texture in the range we studied were small.  相似文献   
2.
The availability of O2 is one of the most important factors controlling the chemical and biological reactions in soils. In this study, the effects of different aeration conditions on the dynamics of the emission of trace gases (CO2, N2O, CH4) and the leachate composition (NO3, DOC, Mn, Fe) were determined. The experiment was conducted with naturally structured soil columns (silty clay, Vertisol) from a well aerated forest site. The soil monoliths were incubated in a microcosm system at different O2 concentrations (0, 0.001, 0.005, 0.01, 0.05, and 0.205 m3 m‐3 in the air flow through the headspace of the microcosms) for 85 days. Reduced O2 availability resulted in a decreased CO2 release but in increased N2O emission rates. The greatest cumulative N2O emissions (= 1.6 g N2O‐N m‐2) were observed at intermediate O2 concentrations (0.005 and 0.01 m3 m‐3) when both nitrification and denitrification occurred simultaneously in the soil. Cumulative N2O emissions were smallest (= 0.05 g N2O‐N m‐2) for the aeration with ambient air (O2 concentration: 0.205 m3 m‐3), although nitrate availability was greatest in this treatment. The emission of CH4 and leaching of Mn and Fe were restricted to the soil columns incubated under completely anoxic conditions. The sequence of the reduction processes under completely anoxic conditions complied with the thermodynamic theory: soil nitrate was reduced first, followed by the reduction of Mn(IV) and Fe(III) and finally CO2 was reduced to CH4. The re‐aeration of the soil columns after 85 days of anoxic incubation terminated the production of CH4 and dissolved Fe and Mn in the soil but strongly increased the emission rates of CO2 and N2O and the leaching of NO3 probably because of the accumulation of DOC and NH4+ during the previous anoxic period.  相似文献   
3.

Key message

A generalized algebraic difference approach (GADA) developed in this study improved the estimation of aboveground biomass dynamics of Cunninghamia lanceolata (Lamb.) Hook and Castanopsis sclerophylla (Lindl.) Schott forests. This could significantly improve the fieldwork efficiency for dynamic biomass estimation without repeated measurements.

Context

The estimation of biomass growth dynamics and stocks is a fundamental requirement for evaluating both the capability and potential of forest carbon sequestration. However, the biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla using the generalized algebraic difference approach (GADA) model has not been made to date.

Aims

This study aimed to quantify aboveground biomass (AGB, including stem, branch and leaf biomass) dynamics and AGB increment in C. lanceolata and C. sclerophylla forests by combining a GADA for diameter prediction with allometric biomass models.

Methods

A total of 12 plots for a C. lanceolata plantation and 11 plots for a C. sclerophylla forest were selected randomly from a 100 m × 100 m systematic grid placed over the study area. GADA model was developed based on tree ring data for each stand.

Results

GADA models performed well for diameter prediction and successfully predicted AGB dynamics for both stands. The mean AGB of the C. lanceolata stand ranged from 69.4 ± 7.7 Mg ha?1 in 2010 to 102.5 ± 11.4 Mg ha?1 in 2013, compared to 136.9 ± 7.0 Mg ha?1 in 2010 to 154.8 ± 8.0 Mg ha?1 in 2013 for C. sclerophylla. The stem was the main component of AGB stocks and production. Significantly higher production efficiency (stem production/leaf area index) and AGB increment was observed for C. lancolata compared to C. sclerophylla.

Conclusion

Dynamic GADA models could overcome the limitations posed by within-stand competition and limited biometric data, can be applied to study AGB dynamics and AGB increment, and contribute to improving our understanding of net primary production and carbon sequestration dynamics in forest ecosystems.
  相似文献   
4.
European Journal of Forest Research - Research on mixed forests has mostly focused on tree growth and productivity, or resistance and resilience in changing climate conditions, but only rarely on...  相似文献   
5.
6.
7.
Climate change includes not only shifts in mean conditions but also changes in the frequency and timing of extreme weather events. Tree seedlings, as the potential future overstory, are responding to the selective pressures of both mean and extreme conditions. We investigated how increases in mean temperature and the occurrence of late spring frosts affect emergence, development, growth, and survival of 13 native and non-native broadleaf and conifer tree species common in central Europe. Three temperature levels (ambient, +3, and +6 °C) and three spring frost treatments (control, late, and very late) were applied. Development responses of first-year seedlings to warmer temperatures were similar in direction and magnitude for broadleaf and conifer species. Stem size also increased with rising mean temperature for most species, though broadleaf species had maximal height advantage over conifer species in the warmest treatment. Sensitivity to frost differed sharply between the broadleaf and conifer groups. Broadleaf survival and stem length exhibited strong reductions due to frost events while conifer species only showed minor decreases in survival. Importantly, more rapid development and earlier leaf-out in response to warmer temperatures were associated with increased mortality from frost for broadleaf species but decreased mortality for conifer species. This research suggests that compositional shifts in the direction of species favored by increasing mean temperatures may be slowed by extreme events, and thus, the occurrence and impacts of such weather events must be acknowledged and incorporated into research and forest planning.  相似文献   
8.
Microbial heat production is a nonspecific measure for microbial activity irrespective of O2 availability in soils. In a series of long-term batch microcalorimeter experiments with closed ampoules, we examined the microbial activity in glucose-amended soil aggregates from different soil depths of a clay forest soil during the transition from aerobic to anaerobic conditions. Furthermore, the influence of the soil aggregate size on the long-term metabolic heat production was examined. Heat output curves showed a distinct pattern for soil samples from different soil depths and aggregate sizes and led to the following conclusions: 1. Microbial biomass and microbial activity strongly decreased with increasing soil depth as well as increasing soil aggregate size despite relatively constant organic C concentrations. 2. The transition from aerobic to anaerobic conditions led to a considerable drop in microbial activity. However, based on the energy balance, 10-26% of the heat production during the aerobic phase is attributable to anoxic or partly anoxic metabolism. 3. After O2 exhaustion, a lag phase of low but constant heat output was observed, followed by a peak of anaerobic metabolic activity. Heat production during the lag phase was hypothesised to be an indicator for the biomass of facultatively anaerobic microorganisms in the soil.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号