首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
林业   3篇
  2021年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
New Forests - Forest tree seedling production technologies impact reforestation success determined with survival and quality of seedlings. Five Abies alba seedling production technologies were...  相似文献   
2.
Robakowski P 《Tree physiology》2005,25(9):1151-1160
Susceptibility to photoinhibition of the evergreen conifers Abies alba Mill., Picea abies (L.) Karst. and Pinus mugo Turra was investigated in an unheated greenhouse during winter and spring 2003. Photosynthetic performance of the seedlings was assessed by chlorophyll a fluorescence and analyses of chlorophyll and total carotenoid concentrations in needles. During winter months, maximum quantum yield of PSII photochemistry (ratio of variable to maximum fluorescence, Fv/Fm) was significantly greater in A. alba than in P. abies and P. mugo. Abies alba also sustained higher maximum apparent electron transport rate (ETRmax) than P. abies and P. mugo. Total concentrations of chlorophyll and carotenoids in needles decreased during the winter in P. mugo and P. abies, but remained stable in A. alba. For all species, Fv/Fm decreased from December until February and then increased to a maximum in April. Photoinhibition was greatest (Fv/Fm < 0.80) in all seedlings in February, the month with the lowest mean temperature. Saturating photosynthetic photon flux (PPFsat) and ETRmax were positively related to air temperature. All species had lower values of ETRmax and PPFsat in winter than in spring. Non-photochemical quenching of chlorophyll fluorescence (NPQ) was highest at low air temperatures. Differences among species in susceptibility to winter photoinhibition resulted from their specific light preferences and led to different mechanisms to cope with photoinhibitory stress. The more shade-tolerant A. alba sustained a higher photosynthetic capacity in winter than P. abies and P. mugo. Winter photoinhibition in P. abies, P. mugo and, to a lesser extent, in A. alba may reflect adaptive photoprotection of the photosynthetic apparatus in winter.  相似文献   
3.
Leaves developing in different irradiances undergo structural and functional acclimation, although the extent of trait plasticity is species specific. We tested the hypothesis that irradiance-induced plasticity of photosynthetic and anatomical traits is lower in highly shade-tolerant species than in moderately shade-tolerant species. Seedlings of two evergreen conifers, shade-tolerant Abies alba Mill. and moderately shade-tolerant Picea abies Karst., and two deciduous angiosperm species, highly shade-tolerant Fagus sylvatica L. and moderately shade-tolerant Acer pseudoplatanus L., were grown in deep shade (LL, 5% of full irradiance) or in full solar irradiance (HL) during 2003 and 2004. Steady state responses of quantum yield of PSII (Phi(PSII)), apparent electron transport rate (ETR), nonphotochemical quenching (NPQ) and photochemical quenching (qP) were generally modified by the light environment, with slower declines in Phi(PSII) and qP and greater maximal ETR and NPQ values in HL plants in at least one season; however, no link between quantitative measures of plasticity of these traits and shade tolerance was found. Plasticity of nine anatomical traits (including palisade cell length, which was reduced in LL) showed no relationship with shade tolerance, but was less in conifers than in deciduous trees, suggesting that leaf life span may be a significant correlate of plasticity. When LL-acclimated plants were exposed to HL conditions, the degree and duration of photoinhibition (measured as a decline in maximum quantum yield) was greatest in F. sylvatica, much lower in P. abies and A. alba, and lowest in A. pseudoplatanus. Thus, as with the other traits studied, vulnerability to photoinhibition showed no relationship with shade tolerance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号