首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
林业   1篇
  1篇
畜牧兽医   1篇
  2021年   1篇
  2020年   1篇
  1983年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.

Forest transformation from coniferous monocultures to mixed stands is being promoted worldwide, including the introduction of fast-growing broadleaved tree species within native stands. Here, we studied how enrichment of temperate European Scots pine (Pinus sylvestris) forest by North-American northern red oak Quercus rubra impacted macronutrient concentrations in two long-lived and dominant components of the forest understory: bilberry Vaccinium myrtillus and lingonberry V. vitis-idaea. Study sites were located in forest complexes (central Poland) which occupy continuously reforested lands (hereafter ancient forests) as well as post-agricultural lands (recent forests), all suitable for mesic pine forests. Samples of bilberry and lingonberry leaves, stems, and fruits were collected in pine stands and in adjacent Scots pine-red oak stands, in both ancient and recent forests. Concentrations of macronutrients (C, N, P, K, Ca, S, and Mg) in aboveground biomass components were analysed using standardized chemical procedures. The study revealed intra- and interspecific (bilberry vs. lingonberry) differences in concentrations of all nutrients in leaves, stems, and fruits, except for invariable C concentrations. Macronutrient accumulations in plants were decreased by land-use discontinuity and favoured by enrichment of tree stands by Q. rubra. The estimated macronutrient pools were much higher for V. myrtillus than V. vitis-idaea in all forest types studied. They were lower in forests enriched with Q. rubra, both ancient (up to 25.5% for bilberry and 99.9% for lingonberry) and recent (46.9% and 99.9%, respectively), as well as in recent pine forest (46.6% and 81.1%, respectively) than in ancient pine forest. Higher K and S pools (39.3% and 6.5%, respectively) noted for bilberry in an ancient forest with Q. rubra were exceptions. Despite more effective accumulations of elements at the species level, macronutrient pools of Vaccinium myrtillus and V. vitis-idaea decreased significantly in the presence of introduced Q. rubra due to negative impacts of this broadleaved tree on bilberry and lingonberry cover and biomass. Therefore, the limitation of alien Q. rubra planting in sites of mesic pine forest with the abundant occurrence of V. myrtillus and/or V. vitis-idaea is recommended.

Graphic abstract
  相似文献   
2.
3.
Purpose

The objective of this study was to determine the long-term environmental changes induced by ancient landslide in the mountain fen. Attempts were made to demonstrate the progress of the soil cover restoration process about 200 years after the landslides and associated with changes in vegetation and soil microarthropod biodiversity and occurrence pattern associated with the restoration of soil cover.

Material and methods

The study covered mountain fen of the Caltho-Alnetum in the Babiogórski National Park in Outer Flysch Carpathians, Poland, where ancient landslide deposits are causing disturbance in fen hydrologic regime and over time related to various rate of fen area natural restoration processes. The drill test has been used to assess changes in layering and thickness of the fen soils. The following soil parameters, such as pH and total organic carbon content, were determined at each distinguish layer. The diversity and distribution pattern of soil microarthropods, represented by Collembola, was examined in two parts of the fen: restored and not-restored. The soil parameters, such as pH, electrical conductivity, total exchangeable base, total organic carbon, and nitrogen content, were determined in the soil samples simultaneously. The assessment of the vegetation structure recovery within studied mountain fen after landslide was referred to average parameters of the community completed for other natural mountain fens under the Caltho-Alnetum community. The research results were statistically verified.

Results and discussion

The test drillings showed that landslides change soil layering, site-specific soil properties of mountain fen such as chemistry (the statistically significant differences were noted only in the case of total organic carbon content), vegetation structure, and soil microarthropod communities. By changing site-specific conditions, landslides influence on the biodiversity and peatland ecosystems functioning.

Conclusion

Our results clearly demonstrate that the landslide itself initiated a complex and lengthy process of changes in biological aspects of peatlands including the biodiversity of the underground fauna and plant community. Soil microarthropod communities represented by Collembola can be used as a good indicator of mountain fen restoration process.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号