首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
林业   11篇
农学   1篇
  13篇
综合类   2篇
农作物   9篇
畜牧兽医   3篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
2.
We studied sap flow in dominant coniferous (Pinus sylvestris L.) and broadleaf (Populus canescens L.) species and in understory species (Prunus serotina Ehrh. and Rhododendron ponticum L.) by the heat field deformation (HFD) method. We attempted to identify possible errors arising during flow integration and scaling from single-point measurements to whole trees. Large systematic errors of -90 to 300% were found when it was assumed that sap flow was uniform over the sapwood depth. Therefore, we recommend that the radial sap flow pattern should be determined first using sensors with multiple measuring points along a stem radius followed by single-point measurements with sensors placed at a predetermined depth. Other significant errors occurred in the scaling procedure even when the sap flow radial pattern was known. These included errors associated with uncertainties in the positioning of sensors beneath the cambium (up to 15% per 1 mm error in estimated xylem depth), and differences in environmental conditions when the radial profile applied for integration was determined over the short term (up to 47% error). High temporal variation in the point-to-area correction factor along the xylem radius used for flow integration is also problematic. Compared with midday measurements, measurements of radial variation of sap flow in the morning and evening of sunny days minimized the influence of temporal variations on the point-to-area correction factor, which was especially pronounced in trees with a highly asymmetric sap flow radial pattern because of differences in functioning of the sapwood xylem layers. Positioning a single-point sensor at a depth with maximum sap flow is advantageous because of the high sensitivity of maximum sap flow to water stress conditions and changes in micro-climate, and because of the lower random errors associated with the positioning of a single-point sensor along the xylem radius.  相似文献   
3.
Variations in radial patterns of xylem water content and sap flow rate were measured in five laurel forest tree species (Laurus azorica (Seub.) Franco, Persea indica (L.) Spreng., Myrica faya Ait., Erica arborea L. and Ilex perado Ait. ssp. platyphylla (Webb & Berth.) Tutin) growing in an experimental plot at Agua García, Tenerife, Canary Islands. Measurements were performed around midday during warm and sunny days by the heat field deformation method. In all species, water content was almost constant (around 35% by volume) over the whole xylem cross-sectional area. There were no differences in wood color over the whole cross-sectional area of the stem in most species with the exception of E. arborea, whose wood became darker in the inner layers. Radial patterns of sap flow were highly variable and did not show clear relationships with tree diameter or species. Sap flow occurred over the whole xylem cross-sectional area in some species, whereas it was limited to the outer xylem layers in others. Sap flow rate was either similar along the xylem radius or exhibited a peak in the outer part of the xylem area. Low sap flow rates with little variation in radial pattern were typical for shaded suppressed trees, whereas dominant trees exhibited high sap flow rates with a peak in the radial pattern. Stem damage resulted in a significant decrease in sap flow rate in the outer xylem layers. The outer xylem is more important for whole tree water supply than the inner xylem because of its larger size. We conclude that measurement of radial flow pattern provides a reliable method of integrating sap flow from individual measuring points to the whole tree.  相似文献   
4.
Purpose

The purpose of this research was to study the generation, sink, and emission of greenhouse gases by soils on technogenic parent materials, created at different stages of the Moskva River floodplain development (1—construction and 2—landscaping of residential areas).

Materials and methods

Field surveys revealed the spatial trends of concentration and emission of the greenhouse gases in following groups of soils: Retisols (RT-ab-ct) and Fluvisols (FL-hu, FL-hi.gl) before land engineering preparation for the construction, Urbic Technosols Transportic (TC-ub-ar.tn and TC-ub-hu.tn) at stage 1 and Urbic Technosols Folic (TC-ub-fo) at stage 2. CO2 and CH4 concentration in soils and their emission were determined using subsurface soil air equilibration tubes and the closed chamber method, respectively. Bacterial methane generation rate (MGR) and methane oxidation rate (MOR) were measured by kinetic methods.

Results and discussion

In natural soils MOR is caused only by intra-aggregate methanogenesis. The imbalance of methane generation and oxidation was observed in FL-hi.gl. It caused CH4 accumulation in the profile (7.5 ppm) and its emission to the atmosphere (0.11 mg CH4 m?2 h?1). RT-ab-ct acted as the sink of atmospheric methane. CO2 emission was 265.1?±?24.0 and 151.9?±?37.2 mg CO2 m?2 h?1 from RT-ab-ct and FL-hi.gl, respectively. In Technosols CH4 concentration was predominantly low (median was 2.7, 2.9, and 3.0 ppm, in TC-ub-ar.tn, TC-ub-hu.tn, and TC-ub-fo, respectively), but due to the occurrence of peat sediments under technogenic material, it increased to 1–2%. Methane emission was not observed due to functioning of biogeochemical barriers with high MOR. In TC-ub-ar.tn and TC-ub-hu.tn, the barriers were formed at 60-cm depth. In TC-ub-fo, the system of barriers was formed in Folic and Technic horizons (at 10- and 60-cm depth). CO2 emission was 2 times lower from TC-ub-ar.tn and TC-ub-hu.tn and 1.5 times higher from TC-ub-fo than from natural soils.

Conclusions

Greenhouse gas generation, sink, and emission by natural soils and Technosols in floodplain were estimated. CO2 and CH4 content in Technosols varied depending on the properties of parent materials. Technosols at stage 1 did not emit CH4 due to formation of biogeochemical barriers—soil layers of high CH4 utilization rates. Urbic Technosols (Folic) at stage 2 performed as a source of significant CO2 emission.

  相似文献   
5.
Journal of Soils and Sediments - Urbanization significantly changes the carbon balance of the terrestrial ecosystem, an important component of which is soil CO2 emission. One of the main sources of...  相似文献   
6.
The Atlantic cod (Gadus morhua) and red king crab (Paralithodes camtschaticus) processing wastes are massive and unutilized in the Murmansk region of Russia. The samples of skin-containing waste of Atlantic cod fillets production were hydrolyzed using enzyme preparations derived from red king crab hepatopancreases, porcine pancreases, and Bacillus subtilis bacteria. The activity of enzymes from crab hepatopancreases was significantly higher than the activity of enzymes derived from other sources. The optimal conditions of the hydrolysis process have been figured out. The samples of cod processing waste hydrolysate were analyzed for amino acid composition and molecular weight distribution. The samples of hydrolysate were used as core components for bacterial culture medium samples. The efficiency of the medium samples was tested for Escherichia coli growth rate; the most efficient sample had an efficiency of 95.3% of that of a commercially available medium based on fish meal. Substitution of medium components with those derived from industrial by-products is one of the ways to decrease a cost of a culture medium in biopharmaceutical drug production.  相似文献   
7.
Fucosylated chondroitin sulfates (FCSs) FCS-BA and FCS-HS, as well as fucan sulfates (FSs) FS-BA-AT and FS-HS-AT were isolated from the sea cucumbers Bohadschia argus and Holothuria (Theelothuria) spinifera, respectively. Purification of the polysaccharides was carried out by anion-exchange chromatography on DEAE-Sephacel column. Structural characterization of polysaccharides was performed in terms of monosaccharide and sulfate content, as well as using a series of non-destructive NMR spectroscopic methods. Both FCSs were shown to contain a chondroitin core [→3)-β-d-GalNAc-(1→4)-β-d-GlcA-(1→]n bearing sulfated fucosyl branches at O-3 of every GlcA residue in the chain. These fucosyl residues were different in pattern of sulfation: FCS-BA contained Fuc2S4S, Fuc3S4S and Fuc4S at a ratio of 1:8:2, while FCS-HS contained these residues at a ratio of 2:2:1. Polysaccharides differed also in content of GalNAc4S6S and GalNAc4S units, the ratios being 14:1 for FCS-BA and 4:1 for FCS-HS. Both FCSs demonstrated significant anticoagulant activity in clotting time assay and potentiated inhibition of thrombin, but not of factor Xa. FS-BA-AT was shown to be a regular linear polymer of 4-linked α-L-fucopyranose 3-sulfate, the structure being confirmed by NMR spectra of desulfated polysaccharide. In spite of considerable sulfate content, FS-BA-AT was practically devoid of anticoagulant activity. FS-HS-AT cannot be purified completely from contamination of some FCS. Its structure was tentatively represented as a mixture of chains identical with FS-BA-AT and other chains built up of randomly sulfated alternating 4- and 3-linked α-L-fucopyranose residues.  相似文献   
8.
9.
Top dieback of Norway spruce (Picea abies), triggered by drought in 2004–2006, has been observed in Southeast Norway and trees died within four years after appearance of the first symptoms. The aim of our study was to use sap flux measurements as a diagnostic method for assessment of tree vitality. We used the heat field deformation method to monitor the sap flux density (SFD) in four pairs of healthy and declining trees in situ. To provide retrospective information on hydraulic performance of the trees we took samples for wood anatomical analysis. After felling the trees we used the modified differential translucence method (MDT) as a proxy for the SFD measurements. Healthy trees had three times higher SFD values as declining trees. In some healthy trees we detected decreasing SFD with time. The MDT method agreed with the SFD measurements. In conclusion, we detected sap flux dysfunction in declining trees and showed that the SFD reduction may occur during a short period, prior to occurrence of any visual symptoms. We suggest incorporating the SFD measurements into the repertoire of diagnostic tools in forest pathology.  相似文献   
10.
An investigation was carried out to compare the water balance of Scots pine in Flanders growing on soils with contrasted water availability. Based on sap flow measurements transpiration of Scots pine was determined for two small plots on cover sands resting on a clayey substratum of varying depths (shallow and deep). Soil water content (SWC) was relatively low (0.12–0.21 m3 m−3) in the upper topsoil (0–0.75 m) in both plots. However, it was always higher in the shallow plot (by 3–27%) than in the deep plot. The difference between SWC in both plots was more pronounced in the deeper soil layers (0.75–1.5 m). Sap flow was measured in seven sample pine trees on each plot from May to October 2000 using the heat field deformation (HFD) method. Transpiration of the individual trees in the deep plot was 22% lower than in trees in the shallow plot. The difference decreased to 15% after scaling up to the stand level due to a higher density of trees growing in the deep plot. It was hypothesized that higher water uptake in the shallow plot was possibly caused by structural differences between the root systems of trees growing in plots with variable soil texture. The sapwood in shallow-plot trees was 1 cm less deep than in trees growing in the deep plot (as measured by biometric and sap flow pattern methods). Sap flow radial patterns suggested a higher involvement of sinker roots for water uptake in the deep clayey substratum plot. This was in agreement with higher activity of the inner xylem in trees on the deep plot under higher evaporative demands. However, the fraction of the inner xylem to the whole-tree water supply was nearly three-fold lower than the outer xylem, which appeared to provide water presumably from the superficial roots. The fraction of these roots, estimated according to sap flow radial patterns, was around 10% higher in trees on the shallow plot. This caused 30% higher sap flow in the stem outer xylem there. Transpiration of the pine stands was limited under high evaporative demands in both plots by the low availability of soil water. The limitation was greater in the deep plot and persisted throughout the whole growing season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号