首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
林业   5篇
园艺   1篇
  2009年   5篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
In this study, we present estimated ranges in carbon (C) sequestration per kg nitrogen (N) addition in above-ground biomass and in soil organic matter for forests and heathlands, based on: (i) empirical relations between spatial patterns of carbon uptake and influencing environmental factors including nitrogen deposition (forests only), (ii) 15N field experiments, (iii) long-term low-dose N fertilizer experiments and (iv) results from ecosystem models. The results of the various studies are in close agreement and show that above-ground accumulation of carbon in forests is generally within the range 15–40 kg C/kg N. For heathlands, a range of 5–15 kg C/kg N has been observed based on low-dose N fertilizer experiments. The uncertainty in C sequestration per kg N addition in soils is larger than for above-ground biomass and varies on average between 5 and 35 kg C/kg N for both forests and heathlands. All together these data indicate a total carbon sequestration range of 5–75 kg C/kg N deposition for forest and heathlands, with a most common range of 20–40 kg C/kg N. Results cannot be extrapolated to systems with very high N inputs, nor to other ecosystems, such as peatlands, where the impact of N is much more variable, and may range from C sequestration to C losses.  相似文献   
2.
After many years of increasing nitrogen deposition, the deposition rates are now decreasing. A major question is whether this will result in the expected positive effects on plant species diversity. Long-term experiments that investigate the effects of decreasing deposition are not available. Model simulations may yield insight into the possible effects of decreasing nitrogen deposition on the vegetation. Therefore we developed the vegetation succession model SUMO which is closely linked to the soil model SMART2. In SUMO, the biomass development of five functional plant types is simulated as a function of nitrogen availability, light interception and management. The model simulates the change in biomass distribution over functional types during the succession from almost bare soil via grassland or heathland to various forest types.The model was validated on three sites in The Netherlands and one site in the UK. The aboveground biomass of two grassland vegetation types was well simulated, as well as the aboveground biomass of heathlands during succession of sod removal. Some of the stages of forest succession were simulated less well, but the calculated biomass in the older stages agreed with measured values.To explore the long-term effect of a decrease in nitrogen deposition, we applied the model to a heathland and a pine stand. In the heathland a major change was predicted as a result of decreasing nitrogen deposition in combination with turf stripping. The dominance of grasses changed into a dominance of dwarf shrubs, whereas at continuing high levels of nitrogen deposition grasses remained dominant. In contrast, the simulations indicated only very small effects of a decreasing N deposition in pine forests. This difference is due to the removal of excess nitrogen by management (turf stripping) in the heathland, whereas the more extensive management in the forest hardly removes any nitrogen from the system. The main conclusion from these examples is that a decrease of nitrogen deposition may retard succession, and consequently increase biodiversity in heathland but probably not in forest. The effects of declining N deposition depend on the amount of N that is removed from the system as a consequence of the various management regimes.  相似文献   
3.
Changes in the Earth's atmosphere are expected to influence the growth, and therefore, carbon accumulation of European forests. We identify three major changes: (1) a rise in carbon dioxide concentration, (2) climate change, resulting in higher temperatures and changes in precipitation and (3) a decrease in nitrogen deposition. We adjusted and applied the hydrological model Watbal, the soil model SMART2 and the vegetation model SUMO2 to asses the effect of expected changes in the period 1990 up to 2070 on the carbon accumulation in trees and soils of 166 European forest plots. The models were parameterized using measured soil and vegetation parameters and site-specific changes in temperature, precipitation and nitrogen deposition. The carbon dioxide concentration was assumed to rise uniformly across Europe. The results were compared to a reference scenario consisting of a constant CO2 concentration and deposition scenario. The temperature and precipitation scenario was a repetition of the period between 1960 and 1990. All scenarios were compared to the reference scenario for biomass growth and carbon sequestration for both the soil and the trees.  相似文献   
4.
The process based model SMART–SUMO–WATBAL was applied to 166 intensive monitoring forest plots of mid- and high-latitude Europe to evaluate the effects of expected future changes in carbon dioxide concentration, temperature, precipitation and nitrogen deposition on forest growth (net annual increment). These results were used in the large-scale forest scenario model EFISCEN (European Forest Information SCENario model) to upscale impacts of environmental change and to combine these results with adapted forest management. Because of the few plots available, Mediterranean countries were excluded from analyses. Results are presented for 109 million ha in 23 European countries.  相似文献   
5.
Global warming and loss of biodiversity are among the most prominent environmental issues of our time. Large sums are spent to reduce their causes, the emission of CO2 and nitrogen compounds. However, the results of such measures are potentially conflicting, as the reduction of nitrogen deposition may hamper carbon sequestration and thus increase global warming. Moreover, it is uncertain whether a lower nitrogen deposition will lead to a higher biodiversity. We applied a dynamic soil model, a vegetation dynamic model and a biodiversity regression model to investigate the effect of nitrogen deposition reduction on the carbon sequestration and plant species diversity. The soil and vegetation models simulate the carbon sequestration as a result of nitrogen deposition and they provide the biodiversity model with information on the soil conditions groundwater table, pH and nitrogen availability. The plant diversity index resulting from the biodiversity model is based on the occurrence of ‘red list’ species for the tree soil conditions. Based on the model runs we forecast that a gradual decrease in nitrogen deposition from 40 to 10 kg N ha−1 y−1 in the next 25 years will cause a drop in the net carbon sequestration of forest in The Netherlands to 27% of the present amount, while biodiversity remains constant in forest, but may increase in heathland and grassland.  相似文献   
6.
In the industrialized world large sums of money are spent on measures to preserve biodiversity by improving environmental quality. This creates a need to evaluate the effectiveness of such measures. In response we devel oped a model, NTM, that links plant biodiversity to abiotic variables that are under human control. These vari ables are: vegetation management, and the soil variables groundwater level, and nitrogen availability. We used species richness and the criteria of the Red Lists, i.e., the rarity and decline per species as measure for potential changes in biodiversity. NTM uses a statistical approach, and models potential plant biodiversity based on the above criteria as a non-linear function of the three soil variables. The regression model is calibrated on a data set consisting of 33,706 vegetation relevés. Because field data of vegetation combined with measurements of soil variables are insufficiently available, we used the average of Ellenbergs indicator values of the species in each relevé as a proxy. NTM was subjected to both validation and uncertainty analysis. The validation was car ried out by comparison with an independent data set. The uncertainty analysis showed that uncertainty in abso lute biodiversity values is large, but that comparative scenario studies can be carried out with an acceptable uncertainty. As an example we show the evaluation of the impact of three European economic scenarios on po tential plant biodiversity in the Netherlands. Although there were differences per vegetation type and per region, potential plant biodiversity had a tendency to increase, with the highest increase for the scenario with the highest reduction in atmospheric deposition of nitrogen and acidity.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号