首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
林业   1篇
  3篇
综合类   7篇
畜牧兽医   8篇
园艺   1篇
植物保护   22篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2008年   1篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有42条查询结果,搜索用时 31 毫秒
1.
2.
The relation between the frequency of legume crops in a rotation and the root rot severity in pea was examined in a field survey. Additionally, greenhouse experiments were performed with soil samples from legume rotation trials or from farmers' fields. The frequency of pea crops in current rotations proved to be much less than the recommended value of one in six years. The correlation between pea root rot and the number of years that pea or other legumes were not grown on the field under consideration (called crop interval) was weak. Root rot severity correlated better with the frequency of peas or legumes in general over a period of 18 years, but the frequency still explained only a minor fraction of the variation in disease index. Some experimental data pointed to the occurrence of a highly specific pathogen microflora with continuous cropping of only one legume species, but this phenomenon probably does not occur in farmers' fields. In field samples, root disease index for pea correlated well with that for field bean. The survival of resting structures of pathogens such asAphanomyces euteiches probably explains why the frequency of legume cropping has a higher impact than crop interval on root disease incidence. Pea-free periods and legume frequencies have a poor predictive value for crop management purposes.  相似文献   
3.
4.
Pons TL  Welschen RA 《Tree physiology》2003,23(14):937-947
High midday temperatures can depress net photosynthesis. We investigated possible mechanisms underlying this phenomenon in leaves of Eperua grandiflora (Aubl.) Benth. saplings. This tropical tree establishes in small gaps in the rainforest canopy where direct sunlight can raise midday temperatures markedly. We simulated this microclimate in a growth chamber by varying air temperature between 28 and 38 degrees C at constant vapor pressure. A decrease in stomatal conductance in response to an increase in leaf-to-air vapor pressure difference (deltaW) caused by an increase in leaf temperature (Tleaf) was the principal reason for the decrease in net photosynthesis between 28 and 33 degrees C. Net photosynthesis decreased further between 33 and 38 degrees C. Direct effects on mesophyll functioning and indirect effects through deltaW were of similar magnitude in this temperature range. Mitochondrial respiration during photosynthesis was insensitive to Tleaf over the investigated temperature range; it thus did not contribute to midday depression of net photosynthesis. Internal conductance for CO2 diffusion in the leaf, estimated by combined gas exchange and chlorophyll fluorescence measurements, decreased slightly with increasing Tleaf. However, the decrease in photosynthetic rate with increasing Tleaf was larger and thus the difference in CO2 partial pressure between the substomatal cavity and chloroplast was smaller, leading to the conclusion that this factor was not causally involved in midday depression. Carboxylation capacity inferred from the CO2 response of photosynthesis increased between 28 and 33 degrees C, but remained unchanged between 33 and 38 degrees C. Increased oxygenation of ribulose-1,5-bisphosphate relative to its carboxylation and the concomitant increase in photorespiration with increasing Tleaf were thus not compensated by an increase in carboxylation capacity over the higher temperature range. This was the principal reason for the negative effect of high midday temperatures on mesophyll functioning.  相似文献   
5.
6.
Distal limb development and specification of digit identities in tetrapods are under the control of a mesenchymal organizer called the polarizing region. Sonic Hedgehog (SHH) is the morphogenetic signal produced by the polarizing region in the posterior limb bud. Ectopic anterior SHH signaling induces digit duplications and has been suspected as a major cause underlying congenital malformations that result in digit polydactyly. Here, we report that the polydactyly of Gli3-deficient mice arises independently of SHH signaling. Disruption of one or both Gli3 alleles in mouse embryos lacking Shh progressively restores limb distal development and digit formation. Our genetic analysis indicates that SHH signaling counteracts GLI3-mediated repression of key regulator genes, cell survival, and distal progression of limb bud development.  相似文献   
7.
During the 2003 to 2004 outbreak of avian influenza A (H5N1) virus in Asia, there were anecdotal reports of fatal infection in domestic cats, although this species is considered resistant to influenza. We experimentally inoculated cats with H5N1 virus intratracheally and by feeding them virus-infected chickens. The cats excreted virus, developed severe diffuse alveolar damage, and transmitted virus to sentinel cats. These results show that domestic cats are at risk of disease or death from H5N1 virus, can be infected by horizontal transmission, and may play a role in the epidemiology of this virus.  相似文献   
8.
9.
Most emerging infectious diseases in humans originate from animal reservoirs; to contain and eradicate these diseases we need to understand how and why some pathogens become capable of crossing host species barriers. Influenza virus illustrates the interaction of factors that limit the transmission and subsequent establishment of an infection in a novel host species. Influenza species barriers can be categorized into virus-host interactions occurring within individuals and host-host interactions, either within or between species, that affect transmission between individuals. Viral evolution can help surmount species barriers, principally by affecting virus-host interactions; however, evolving the capability for sustained transmission in a new host species represents a major adaptive challenge because the number of mutations required is often large.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号