首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
  国内免费   10篇
林业   1篇
农学   8篇
基础科学   10篇
  15篇
综合类   38篇
农作物   18篇
水产渔业   3篇
畜牧兽医   8篇
园艺   14篇
植物保护   13篇
  2024年   2篇
  2023年   5篇
  2022年   13篇
  2021年   8篇
  2020年   16篇
  2019年   9篇
  2018年   5篇
  2017年   11篇
  2016年   8篇
  2015年   6篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2003年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
1.
The objective of this study was to investigate the characteristics of ruminal microbial communities of alpacas (Lama pacos) and sheep (Ovis aries) fed three diets with varying ratios of roughage (corn stalk) to concentrate, 3:7 (LS), 5:5 (MS) and 7:3 (HS). Six alpacas (one-year-old and weighing 29.5 ± 7.1 kg) and six sheep (one-year-old and weighing 27.9 ± 2.7 kg) were used in this study, in a replicated 3 × 3 Latin square experiment. Total protozoa concentration was determined under the microscope; total fungi and methanogens were assessed using quantitative polymerase chain reaction and expressed as a percentage of total bacterial 16S rRNA gene copies; bacterial communities were investigated by targeted 16S rRNA gene (V3–V4 region) sequencing. The percentage of fungi was significantly higher in alpacas than in sheep under the LS diet, while the concentration of protozoa was significantly lower in alpacas under HS, MS and LS diets. The alpha diversity including Shannon, Chao l and ACE indices of bacterial communities was higher in alpacas than in sheep, under the LS diet. A total of 299 genera belonging to 22 phyla were observed in the forestomach of alpaca and sheep, with Bacteroidetes and Firmicutes dominating both animal species. Phyla Armatimonadetes and Fusobacteria, as well as 64 genera, were detected only in alpacas, whereas phyla Acidobacteria and Nitrospira, as well as 44 genera, were found only in sheep. The abundance of cellulolytic bacteria, including Butyrivibrio and Pseudobutyrivibrio, was higher in alpacas than in sheep under all three diets. These differences in the forestomach microbial communities partly explained why alpacas displayed a higher poor-quality roughage digestibility, and a lower methane production. Results also revealed that the adverse effects of high-concentrate diets (70%) were lesser in alpacas than in sheep.  相似文献   
2.
针对目前植保机械中所使用的喷杆喷架稳定性差、折叠伸展需要人工辅助等问题,设计出了一种液压升降折叠宽幅喷杆喷架。对喷杆喷架的升降装置、90°液压油缸折叠机构、180°液压油缸折叠机构和整体宽幅喷架进行了理论分析和结构设计,并建立了关键部件的三维模型。通过田间试验验证了该装置设计方案的合理性,为研发先进适用、具有自主知识产权的液压升降折叠宽幅喷杆喷架奠定了基础。  相似文献   
3.
<中华人民共和国种子法>(以下简称<种子法>)实施后,随着种子企业改革的不断深入和种子市场的进一步放开,种子的推广和销售格局发生了根本变化.彻底打破了过去计划经济体制下的种子公司一家独有局面.在不违反<种子法>规定的前提下,谁都可以推广和销售玉米新品种.  相似文献   
4.
为改善大豆分离蛋白膜的性能,将纳米氧化锌(Zno Nanoparticles,Zno NPs)和葡萄皮红(Grape-Skin Red,GSR)加入大豆分离蛋白(Sov ProteinIsolate,SPI)中制备SPI/ZnO NPs/GSR复合膜,对复合膜的性能进行表征。结果表明当葡萄皮红、ZnO NPs和大豆分离蛋白以1:2:25的质量比制备复合膜时,相对于SPI/ZnO NPs膜,葡萄皮红可提高ZnO NPs和大豆分离蛋白的相容性,改善ZnO NPs在SPI膜中的分散性,并与ZnO NPs发挥协同作用提高SPI膜的机械性能、耐水性能和热稳定性(P0.05)。SPI/ZnO NPs/GSR复合膜相比较于SPI膜,拉伸强度从1.37 MPa升至3.28 MPa,熔点从194℃升至231℃,含水率从34.41%降至25.37%,水蒸气透过系数从5.57×10~(-12) (g·cm)/(cm~2·s·Pa)降至4.74×10~(-12) (g·cm)/(cm~2·s·Pa)。此外,复合膜对金黄色葡萄球菌和大肠杆菌表现出优异的抗菌性能,抑菌圈直径随着活性成分的添加呈上升趋势(大肠杆菌:SPI 膜无,SPI/ZnO NPs 膜 2.29 cm,SPI/ZnO NPs/GSR 膜 2.36 cm;金黄色葡萄球菌:SPI 膜无,SPI/ZnO NPs 膜 2.32 cm,SPI/ZnO NPs/GSR膜2.42 cm),在活性包装应用中具有极大潜力。研究结果为大豆分离蛋白基薄膜的生产应用提供参考。  相似文献   
5.
富贵竹切口保鲜及贮运研究   总被引:3,自引:0,他引:3  
通过大量实验筛选出适合富贵竹切口的保鲜液,冬季宜采用配方12,夏季宜采用配方5进行处理。处理液B对防治脚部黄化及促根效果极显著。加工后的富贵竹成品货柜运输的最佳温度为15 ̄16℃,配合含1.0mg/L6-BA 1‰托布津的保水剂包根处理,可极显著降低贮运中的损失率。研究成果在生产中成功应用。  相似文献   
6.
本研究基于茶树转录组数据库,以茶树龙井43为试验材料,通过RT-PCR方法从该茶树的cDNA中克隆得到1个CsMADS1基因。序列分析表明:茶树CsMADS1基因开放阅读框长度为657 bp,编码218个氨基酸,是典型的植物MADS-box家族转录因子。序列多重比对显示,该序列与多个相关物种的MADS-box序列一致性为65.65%,含有高度保守的MADS结构域和半保守的K结构域。氨基酸理化性质、亲疏水性、亚细胞定位预测、无序化分析,以及二级和三级结构分析显示,CsMADS1转录因子是亲水性蛋白,可能定位于细胞核中,无序化程度明显,以α-螺旋结构为主,并与人MEF2蛋白具有相似的三级结构。利用实时荧光定量PCR方法分析了茶树龙井43中CsMADS1基因在非生物胁迫下的表达。结果表明,茶树中CsMADS1基因对高温、低温、干旱和高盐等不同非生物胁迫有响应,且表达存在差异。  相似文献   
7.
以神东矿区采煤沉陷地种植的复垦植物(野樱桃、文冠果、欧李和山杏)为试材,采用野外原位监测方法,研究覆盖紫花苜蓿和未覆盖处理(对照,CK)对植物生长及土壤化学和生物性状的影响。结果表明:覆盖紫花苜蓿处理的野樱桃、文冠果、欧李和山杏苗木地上部干质量比未覆盖处理显著增加31.7%~54.6%,根干质量增加25.6%~41.0%;同样地,植物成活率和叶色值分别增加到85%和32.0以上,显著高于对照;覆盖处理的土壤碱解氮、有机质、速效磷、速效钾含量增幅较对照分别达到12.5%~17.9%、14.0%~17.8%、14.0%~23.2%、13.6%~28.4%,差异显著;土壤酸性磷酸酶、蔗糖酶、脲酶和硝酸还原酶活性分别比对照显著提高36.4%~41.6%、21.8%~51.2%、33.6%~44.7%、20.5%~39.9%。因此,覆盖紫花苜蓿有利于改善神东采煤沉陷区复垦植物生长、提高土壤化学和生物学性状水平,为矿区生态恢复提供依据。  相似文献   
8.
以茶树品种‘龙井43’作为材料,利用RT-PCR方法,从茶树的cDNA中克隆得到1个编码蛋白激酶的基因,命名为CsCIPK。序列分析表明,CsCIPK开放阅读框长度为1 341 bp,编码446个氨基酸,蛋白质分子量为414234。蛋白功能域预测和多重对比显示,CsCIPK蛋白含有1个保守的N端激酶结构域和1个相对不保守的C端调节结构域,即丝氨酸/苏氨酸激酶结构域和NAF结构域。理化性质、亲/疏水性、无序化分析显示,CsCIPK属于疏水性蛋白,理论等电点为7.04,有4段无序化区域,其二级结构分析显示主要由α螺旋、不规则卷曲组成。通过实时荧光定量PCR对‘龙井43’和‘安吉白茶’中的CsCIPK表达特性进行分析。结果显示‘龙井43’中CsCIPK的相对表达量在高温、干旱及盐处理4 h、低温处理24 h时达到最高。‘安吉白茶’中CsCIPK的相对表达量在高温及盐处理4 h、低温及干旱处理1h时达到最高。CsCIPK在‘龙井43’的根中,‘安吉白茶’茎中表达量最高。不同浓度的GA和IBA处理‘龙井43’茶苗,结果显示0.2 mmol·L-1 GA处理后,CsCIPK表达量先升高后下降,6 d时处理组为对照组的62倍;0.6 mmol·L-1 IBA处理后,CsCIPK的表达量在3 d时显著高于对照组;不同浓度GA和IBA处理后,9 d时CsCIPK表达量均显著低于对照。  相似文献   
9.
准确评估粮食主产区气象因子变化特征及对参考作物蒸散量(reference crop evapotranspiration,ET0)的影响,对农田水文循环、区域农业水资源优化配置与高效利用等具有重要意义。利用中国粮食主产区258个气象站点1961―2013年的逐日气象资料,采用Penman-Monteith公式计算ET0,通过M-K趋势检验法、偏相关分析、多元线性回归计算贡献率等方法,分析了1961—2013年中国粮食主产区主要气象因子时空演变及其对ET0变化的贡献特征。结果表明,1961—2013年中国粮食主产区相对湿度、温度、降水在空间上由南至北呈降低趋势,而日照时间和风速则由南至北呈增高趋势;1961—2013年中国粮食主产区全区、温带湿润半湿润地区(I区)、温带干旱半干旱地区(II区)、亚热带湿润地区(III区)及暖温带半湿润地区(IV区)多年平均气温均呈增大趋势,平均风速、相对湿度、降水与日照时间均呈减小趋势;1961—2013年中国粮食主产区年内ET0均呈锯齿状下降,且ET0在四季呈现出夏季春季秋季冬季的特征;多年平均风速、气温、日照时间与ET0在全区及各分区总体均显著正相关(P0.05),而相对湿度与ET0在全区及各分区均极显著负相关(P0.01);1961—2013年中国粮食主产区全区及I~IV区气温、风速、相对湿度对ET0变化均具有较大贡献,其中相对湿度为I区、III区及IV区的主要气象驱动因子,其次为平均气温和风速;而II区ET0变化的主要驱动因子为风速,其平均贡献率WII(风速)为0.37;综上所述,中国粮食主产区主要气象因子变化特征与ET0的响应,均呈现出区域性、季节性差异。  相似文献   
10.
‘安椒12’是以‘m 99-6’为母本‘、538’为父本配制而成的杂交1代辣椒新品种。该品种生育期185 d左右,中早熟,始花节位8~10节;果实线形,果长22~25 cm,横径1.8~2.0 cm,平均单果质量21 g,最大单果质量36 g,连续坐果性强,最多可连续不间断坐果136个;早春栽培前期平均667 m^2产量900~1 200 kg,667 m^2总产量3 500~4 500 kg;产量高,抗性强,嫩果绿色,老果红色,适合鲜食和加工。适宜在河南、河北等省春季保护地或春季露地种植。2010年被评为河南省科技进步三等奖;2018年通过了非主要农作物品种登记。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号