首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
农学   1篇
综合类   1篇
农作物   1篇
植物保护   4篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The use of camera vision to automatically detect head blight (scab) on wheat ears could provide information about the severity of this dangerous disease and help meet future food traceability requirements. Fusarium spp. is dangerous for both human and animal consumption and the ability to monitor symptom location and severity before the harvested product is further processed or stored could help determine whether the grain is fit for human/animal consumption, for bio-conservation, or is completely unusable.To generate various infection levels, field trials were conducted in 2008 and 2009 using wheat varieties with differing levels of susceptibility to the disease; plots were artificially infected with a spore suspension. A color (red, green, and blue) and a multispectral (red, infrared) camera system with real-time image analysis software were developed and compared to detect disease symptoms in the plots.The chlorophyll defect of the infected wheat ears was classified against the image background by setting binarization thresholds. The result was a black and white image. Single pixels or tiny clusters of pixels not belonging to the symptoms were eliminated by setting an area threshold. For both systems, a linear correlation was found between the camera and the visually detected disease levels of the wheat ears in the plots.In the non-infected control plots without disease symptoms, the multispectral system accurately measured “no disease” even though the digital color system detected too much infection (i.e., a false positive). The multispectral system showed a superior calibration capacity. While the color system had to calibrate for each variety, the multispectral system used only one calibration step before starting the measurements.  相似文献   
2.
Information about disease management in winter wheat (Triticum aestiva) in eight European countries was collated and analysed by scientists and extension workers within the European Network for the Durable Exploitation of Crop Protection Strategies (ENDURE). This included information about specific disease thresholds, decision support systems, host varieties, disease prevalence and pathogen virulence. Major differences in disease prevalence and economic importance were observed. Septoria tritici blotch (Mycosphaerella graminicola) was recognized as the most yield reducing disease in countries with intensive wheat production, but also rust diseases (Puccinia striiformis and Puccinia triticina), powdery mildew (Blumeria graminis) and Fusarium head blight (Fusarium spp.) were seen as serious disease problems. Examples of current integrated pest management (IPM) strategies in different countries have been reported. Disease management and fungicide use patterns showed major differences, with an average input equivalent to 2.3 full dose rates (TFI) in the UK and a TFI of 0.6 in Denmark. These differences are most likely due to a combination of different cropping systems, climatic differences, disease prevalence, and socio-economic factors. The web based information platform www.eurowheat.org was used for dissemination of information and results including information on control thresholds, cultural practices which can influence disease attack, fungicide efficacy, fungicide resistance, and pathogen virulence, which are all elements supporting 1PM for disease control in wheat. The platform is open to all users. The target groups of EuroWheat information are researchers, advisors, breeders, and similar partners dealing with disease management in wheat.  相似文献   
3.
Jørgensen  L. N.  Matzen  N.  Heick  T. M.  Havis  N.  Holdgate  S.  Clark  B.  Blake  J.  Glazek  M.  Korbas  M.  Danielewicz  J.  Maumene  C.  Rodemann  B.  Weigand  S.  Kildea  S.  Bataille  C.  Brauna-Morževska  E.  Gulbis  K.  Ban  R.  Berg  G.  Semaskiene  R.  Stammler  G. 《植物病害和植物保护杂志》2021,128(1):287-301
Journal of Plant Diseases and Protection - Septoria tritici blotch (STB; Zymoseptoria tritici) is the most important leaf disease of wheat in Northern and Western Europe. The problem of fungicide...  相似文献   
4.
5.
6.
Demethylation inhibitor (DMI) and succinate dehydrogenase inhibitor (SDHI) fungicides are currently relied upon for the control of septoria tritici blotch (STB) in European wheat fields. However, multiple mutations have occurred over time in the genes encoding the targeted proteins that have led to a practical loss of fungicide efficacies. Among the different amino acid substitutions in Zymoseptoria tritici associated with resistance to these fungicides, S524T in CYP51 (DMI target) and H152R in SdhC (SDHI target) are regarded as conferring the highest resistance factors to DMI and SDHI, respectively. To facilitate further studies on the monitoring and selection of these substitutions in Z. tritici populations, a multiplex allele-specific quantitative PCR (qPCR) assay allowing for estimation of both allele frequencies in bulk DNA matrices was developed. The assay was then used on complex DNA samples originating from a spore trap network set up in Belgium, Denmark, Sweden, and Ireland in 2017 and 2018, as well as on leaf samples with symptoms. The S524T allele was present in all field samples and its proportion was significantly higher in Ireland than in Belgium, whereas the proportion of H152R was only sporadically present in both countries. The frequency of S524T varied greatly in the airborne inoculum of all four countries; however, the H152R allele was never detected in the airborne inoculum. The method developed in this study can be readily adopted by other laboratories and used for multiple applications including resistance monitoring in field populations of Z. tritici.  相似文献   
7.
Clubroot of oilseed rape (OSR), caused by Plasmodiophora brassicae, is a disease of increasing economic importance worldwide. Previous studies indicated that OSR volunteers, Brassica crops and weeds play a critical role in the predisposition of the disease. To determine the effect of timing of foliar application of the herbicide glyphosate or mechanical destruction of OSR volunteers in reduction of clubroot severity and resting spore production, a series of studies was conducted under controlled conditions with a susceptible OSR cultivar and an isolate of P. brassicae. Plants were inoculated by injecting a spore suspension beside the root hairs at growth stage 11–12 (BBCH scale) and were terminated at 7 (early) or 21 (late) days post‐inoculation (dpi). Under controlled conditions, the first symptoms on roots were observed as early as 7 dpi. The early application of glyphosate as well as early mechanical destruction resulted in significant ( 0.05) reduction in the development of clubroot symptoms, root fresh weight and the number of resting spores?g root. Furthermore, the effect of volunteer management on clubroot severity in the succeeding OSR was studied by inoculating plants with the resting spores obtained from treated clubbed roots. Inoculated OSR exhibited root clubs similar to the initial symptoms after 35 dpi. Plants that were inoculated with spore suspension from early treated roots resulted in significant reductions in clubroot incidence and severity. Conversely, plants inoculated with the spore suspension from the late treated roots displayed levels of clubroot similar to the plants inoculated with the spore solutions of positive controls.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号