首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
林业   9篇
农学   10篇
  27篇
综合类   4篇
农作物   7篇
水产渔业   16篇
畜牧兽医   37篇
园艺   2篇
植物保护   6篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2019年   8篇
  2018年   10篇
  2017年   9篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   6篇
  2011年   7篇
  2010年   11篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1992年   3篇
  1990年   1篇
排序方式: 共有118条查询结果,搜索用时 0 毫秒
1.
2.
Increasing soil carbon (C) in arable soils is an important strategy to achieve sustainable yields and mitigate climate change. We investigated changes in soil organic and inorganic carbon (SOC and SIC) under conservation agriculture (CA) in a calcareous soil of the eastern Indo-Gangetic Plains of India. The treatments were as follows: conventional-till rice and wheat (CT-CT), CT rice and zero-till wheat (CT-ZT), ZT direct seeded rice (DSR) and CT wheat (ZT-CT), ZTDSR and ZT wheat without crop residue retention (ZT-ZT), ZT-ZT with residue (ZT-ZT+R), and DSR and wheat both on permanent beds with residue (PB-PB+R). The ZT-ZT+R had the highest total SOC in both 0–15 and 15–30 cm soil layers (20% and 40% higher (p < .05) than CT-CT, respectively), whereas total SIC decreased by 11% and 15% in the respective layers under ZT-ZT+R compared with CT-CT. Non-labile SOC was the largest pool, followed by very labile, labile and less labile SOC. The benefits of ZT and residue retention were greatest for very labile SOC, which showed a significant (p < .05) increase (~50%) under ZT-ZT+R compared with CT-CT. The ZT-ZT+R sequestered ~2 Mg ha−1 total SOC in the 0–15 cm soil layer in 6 years, where CT registered significant losses. Thus, the adoption of CA should be recommended in calcareous soils, for C sequestration, and also as a reclamation technique.  相似文献   
3.

Background

The SUV3 (suppressor of Var 3) gene encodes a DNA and RNA helicase, which is localized in the mitochondria. Plant SUV3 has not yet been characterized in detail. However, the Arabidopsis ortholog of SUV3 (AT4G14790) has been shown to be involved in embryo sac development. Previously, we have reported that rice SUV3 functions as DNA and RNA helicase and provides salinity stress tolerance by maintaining photosynthesis and antioxidant machinery. Here, we report further analysis of the transgenic OsSUV3 rice plants under salt stress.

Findings

The transgenic OsSUV3 overexpressing rice T1 lines showed significantly higher endogenous content of plant hormones viz., gibberellic acid (GA3), zeatin (Z) and indole-3-acetic acid (IAA) in leaf, stem and root as compared to wild-type (WT), vector control (VC) and antisense (AS) plants under salt (200 mM NaCl) stress condition. A similar trend of endogenous plant hormones profile was also reflected in the T2 generation of OsSUV3 transgenic rice under defined parameters and stress condition.

Conclusions

In response to stress, OsSUV3 rice plants maintained plant hormone levels that regulate the expression of several stress-induced genes and reduce adverse effects of salt on plant growth and development and therefore sustains crop productivity.  相似文献   
4.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   
5.
Soil organic matter (SOM) contributes to the productivity and physical properties of soils. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, no information is available on the effects of long-term manure addition along with mineral fertilizers on C sequestration and the contribution of total C input towards soil organic C (SOC) storage. We analyzed results of a long-term experiment, initiated in 1973 on a sandy loam soil under rainfed conditions to determine the influence of different combinations of NPK fertilizer and fertilizer + farmyard manure (FYM) at 10 Mg ha−1 on SOC content and its changes in the 0–45 cm soil depth. Concentration of SOC increased 40 and 70% in the NPK + FYM-treated plots as compared to NPK (43.1 Mg C ha−1) and unfertilized control plots (35.5 Mg C ha−1), respectively. Average annual contribution of C input from soybean (Glycine max (L.) Merr.) was 29% and that from wheat (Triticum aestivum L. Emend. Flori and Paol) was 24% of the harvestable above-ground biomass yield. Annual gross C input and annual rate of total SOC enrichment were 4852 and 900 kg C ha−1, respectively, for the plots under NPK + FYM. It was estimated that 19% of the gross C input contributed towards the increase in SOC content. C loss from native SOM during 30 years averaged 61 kg C ha−1 yr−1. The estimated quantity of biomass C required to maintain equilibrium SOM content was 321 kg ha−1 yr−1. The total annual C input by the soybean–wheat rotation in the plots under unfertilized control was 890 kg ha−1 yr−1. Thus, increase in SOC concentration under long-term (30 years) rainfed soybean–wheat cropping was due to the fact that annual C input by the system was higher than the required amount to maintaining equilibrium SOM content.  相似文献   
6.
ABSTRACT

Nitrogen uptake being part of nitrogen use efficiency (NUE) is largely decided by root traits. Root traits variability has hardly been explored by breeders mainly because of difficulties in scoring. The hydroponic system requiring lesser space for precise phenotyping of large numbers of genotypes independently of the growing season can be a suitable alternative. However, the effectiveness of hydroponic screening methods needs to be verified under the soil condition of the field or pot. In the present study, root traits and NUE were investigated in 19 genotypes under two conditions (hydroponic and pipe filled with soil). Both environments revealed large variability for root traits and NUE under high and low N conditions establishing the absence of any direct selection for these traits in the past. Under both sets of experimentation, NUpE was largely responsible for improved nitrogen efficiency mainly because of higher root biomass. The significant association between the two screening methods i.e. hydroponic and pot filled with soil under both low and high N condition support large scale screening for root traits under hydroponic condition.  相似文献   
7.
Tropical Animal Health and Production - In this study, the seroprevalence and distribution of Leptospira in dairy cattle in endemic states of India were investigated in association with...  相似文献   
8.
Genetic Resources and Crop Evolution - The wild Malus germplasm is considered as a gene reservoir for various biotic and abiotic stresses tolerance/resistance genes, including important novel...  相似文献   
9.
10.
Susceptibility to IVM (IVM) of “strain A” Haemonchus contortus which had been exposed to IVM four times over a 2-year period was compared to IVM susceptibility of “strain C” H. contortus which had no prior field exposure to IVM, by in vivo and in vitro methods. In vivo, the percentage reduction in faecal egg counts (FEC) and the total worm counts (TWC) were compared between control animals (lambs and kids) and animals treated with low dose IVM (20 μg/kg). In vitro susceptibility to IVM was evaluated by larval migration inhibition (LMI) after the two strains of H. contortus were exposed to different concentrations of IVM. The dose response, measured as the proportion of larvae inhibited from migrating, was used to estimate LD50. Although differences in response to IVM in the in vivo determinations were not significant, “strain A” H. contortus had a significantly higher LD50 than “strain C” in the LMI assay. Coincident with the conduct of the in vivo experiment, it was observed that “strain A” H. contortus established and survived better than “strain C” in the control lambs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号