首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
林业   2篇
  4篇
农作物   2篇
园艺   15篇
植物保护   2篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2013年   4篇
  2012年   6篇
  2010年   3篇
  2009年   1篇
  2005年   3篇
  2004年   2篇
  2000年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Human activities and natural disturbances create spatial heterogeneity within forested landscapes, leading to both sharp and gradual boundaries in vegetation and abiotic attributes, such as rocks. Those boundaries may affect the detailed delineation of avian territories (independently of their general location), but their role is largely unknown. We tested, using a spatial analysis approach, whether spatial heterogeneity of vegetation and abiotic attributes were associated with territory boundaries of ten black-throated blue warblers (Dendroica caerulescens) and 14 ovenbirds (Seiurus aurocapillus). The study was conducted during summer 1999 in a mature deciduous forest near Québec City, Canada. Singing males were mapped from repeated surveys at 756 points, 25 m apart, on a 49 ha grid. Spatial heterogeneity was obtained from 27 attributes measured at each point. Boundaries of bird territories, vegetation, and abiotic attributes were delineated using the lattice-wombling boundary detection algorithm. The spatial association between territory and microhabitat boundaries was computed using the spatial overlap statistics. There was significant spatial overlap between territory boundaries and those of 15 and 17 attributes for black-throated blue warbler and ovenbird, respectively. The attributes most strongly associated with territory boundaries were conifer seedling cover, grass and total vegetation cover between 0-2 m high for black-throated blue warbler and fern cover, vegetation-covered rocks and shrub diversity for ovenbird. Complementary to this, a redundancy analysis (RDA) was used to compare attributes associated with the general occurrence of males to those whose boundaries were associated specifically with territory boundaries. Most attributes whose boundaries were associated with territory boundaries did not correspond to resource attributes, i.e., those where birds were detected most frequently. We conclude that soft boundaries associated with spatial heterogeneity may help shape forest bird territories by providing landmarks not necessarily related to resources used within territories.  相似文献   
2.
Spatial graphs in landscape ecology and conservation have emerged recently as a powerful methodology to model patterns in the topology and connectivity of habitat patches (structural connectivity) and the movement of genes, individuals or populations among these patches (potential functional connectivity). Most spatial graph’s applications to date have been in the terrestrial realm, whereas the use of spatially explicit graph-based methods in the freshwater sciences has lagged far behind. Although at first patch-based spatial graphs were not considered suitable for representing the branching network of riverine landscapes, here we argue that the application of graphs can be a useful tool for quantifying habitat connectivity of freshwater ecosystems. In this review we provide an overview of the potential of patch-based spatial graphs in freshwater ecology and conservation, and present a conceptual framework for the topological analysis of stream networks (i.e., riverscape graphs) from a hierarchical patch-based context. By highlighting the potential application of graph theory in freshwater sciences we hope to illustrate the generality of spatial network analyses in landscape ecology and conservation.  相似文献   
3.

Context

Multi-scale approaches to habitat modeling have been shown to provide more accurate understanding and predictions of species-habitat associations. It remains however unexplored how spatial and temporal variations in habitat use may affect multi-scale habitat modeling.

Objectives

We aimed at assessing how seasonal and temporal differences in species habitat use and distribution impact operational scales, variable influence, habitat suitability spatial patterns, and performance of multi-scale models.

Methods

We evaluated the environmental factors driving brown bear habitat relationships in the Cantabrian Range (Spain) based on species presence records (ground observations) for the period 2000–2010, LiDAR data on forest structure, and seasonal estimates of foraging resources. We separately developed multi-scale habitat models for (i) each season (spring, summer, fall and winter) (ii) two sub-periods with different population status: 2000–2004 (with brown bear distribution restricted to the main population nuclei) and 2005–2010 (with expanding bear population and range); and (iii) the entire 2000–2010 period.

Results

Scales of effect remained considerably stable across seasonal and temporal variations, but not the influence of certain environmental variables. The predictive ability of multi-scale models was lower in the seasons or periods in which populations used larger areas and a broader variety of environmental conditions. Seasonal estimates of foraging resources, together with LiDAR data, appeared to improve the performance of multi-scale habitat models.

Conclusions

We highlight that the understanding of multi-scale behavioral responses of species to spatial patterns that continually shift over time may be essential to unravel habitat relationships and produce reliable estimates of species distributions.
  相似文献   
4.
Antibody-presenting liposomes present high interest as drug delivery systems. The association of antibodies to liposomes is usually realized by covalent coupling of IgGs or their antigen-binding fragments to lipid polar head groups by means of hetero-bifunctional crosslinkers. We present here an original platform of IgG-presenting liposomes which is based on a fusion protein between Annexin-A5 (Anx5) and the IgG-binding ZZ repeat derived from Staphylococcus aureus protein A. The Anx5ZZ fusion protein acts as a bi-functional adaptor that anchors IgGs to liposomes in a non covalent and highly versatile manner. The interactions between IgGs, Anx5ZZ and liposomes were characterized by PAGE, dynamic light scattering and fluorescence quenching assays, establishing that binding of Anx5ZZ to IgGs and of Anx5ZZ-IgG complexes to liposomes is complete with stoichiometric amounts of each species. We found that the sequence of assembly is important and that Anx5ZZ-IgG complexes need to be formed first in solution and then adsorbed to liposomes in order to avoid aggregation. The targeting capacity of Anx5ZZ-IgG-functionalized liposomes was demonstrated by electron microscopy on an ex vivo model system of atherosclerotic plaques. This study shows that the Anx5ZZ adaptor constitutes an efficient platform for functionalizing liposomes with IgGs. This platform may present potential applications in molecular imaging and drug delivery.  相似文献   
5.

Context

Landscapes and animal behavior can exhibit temporal variability and connectivity estimates should consider this phenomenon. In many species, timing of activities such as nesting, mate searching, and hibernation occurs during distinct periods in which movement events may differ, along with physical characteristics of the surrounding landscape.

Objectives

We estimate movement, landscape conductance, and patch importance for a turtle species across two seasonal activity periods (spring, late summer) in a fragmented agricultural region. Three connectivity approaches are compared to identify their advantages and disadvantages.

Methods

A least-cost distance model, circuit-based approach, and patch-based index were used to collectively describe the potential functional connectivity of Blanding’s turtle (Emydoidea blandingii) across a multi-temporal scale in an agricultural region of south western Ontario.

Results

Connectivity decreased further into the active season exhibited through lower conductance of the landscape and fewer pathways, while the importance of habitat nodes shifted due to temporal variability in the number and distribution of nodes. Models provided different yet complimentary information, with least-cost models overestimating discrete pathways yet providing a secondary measure of landscape barriers. The circuit-based model estimated corridors of least resistance providing an overall characterization of the landscape, while patch-based indices provided key information on the importance of individual habitat patches.

Conclusion

Findings highlight the importance of including a temporal aspect in connectivity modelling as results demonstrate a change in functional connectivity over time. We also recommend employing multiple connectivity metrics to capture variation in movement behavior.
  相似文献   
6.
7.
The present study aims first to compare the antioxidant microconstituent contents between organically and conventionally grown tomatoes and, second, to evaluate whether the consumption of purees made of these tomatoes can differently affect the plasma levels of antioxidant microconstituents in humans. When results were expressed as fresh matter, organic tomatoes had higher vitamin C, carotenoids, and polyphenol contents (except for chlorogenic acid) than conventional tomatoes. When results were expressed as dry matter, no significant difference was found for lycopene and naringenin. In tomato purees, no difference in carotenoid content was found between the two modes of culture, whereas the concentrations of vitamin C and polyphenols remained higher in purees made out of organic tomatoes. For the nutritional intervention, no significant difference (after 3 weeks of consumption of 96 g/day of tomato puree) was found between the two purees with regard to their ability to affect the plasma levels of the two major antioxidants, vitamin C and lycopene.  相似文献   
8.
Woodpecker species have significantly expanded their ranges in the last decades of the twentieth century in Mediterranean Europe, which seems to be closely related to forest maturation following large-scale decline in traditional uses. Here we assess the explicit role of forest landscape connectivity in the colonization of the Great Spotted Woodpecker (Dendrocopos major) and the Black Woodpecker (Dryocopus martius) in Catalonia (NE Spain). For this purpose we combined data on breeding bird atlas (10 × 10 km; 1980–2000) and forest inventories (c. 1 × 1 km, 2000). Forest connectivity was measured through graph theory and habitat availability metrics (inter- and intra-patch connectivity) according to species median natal dispersal distances. The best regressions from a set of alternative models were selected based on AICc. Results showed that connectivity between areas of mature forests [diameter at breast height (dbh) ≥ 35 cm] affected Black Woodpecker colonization events. The probability of colonization of the Great Spotted Woodpecker was greater at localities near the sources of colonization in 1980 and with a high connectivity with other less developed forest patches (dbh < 35 cm). The spatial grain at which landscape connectivity was measured influenced the model performance according to the species dispersal abilities, with the species with the lower mobility (D. major) responding better to the forest connectivity patterns at finer spatial scales. Overall, it seems that both species could expand further in European Mediterranean forests in upcoming years but at slower rates if landscape connectivity according to species requirements does not continue to increase. Hence, a proactive and adaptive management should be carried out in order to preserve these species while considering the related major impacts of global change in Mediterranean Europe.  相似文献   
9.
Categorical, class-focused map patterns: characterization and comparison   总被引:1,自引:0,他引:1  
We present a rigorous and simple approach for the comparison of binary landscapes by class-focused metric values that complements the ease of computing these metrics for landscape ecology research. First, we assess whether a class-focused pattern metric value could have emerged due to random chance. Second, we compare two landscapes and assess whether class-focused pattern metrics computed for each landscape are significantly different or not. Our frameworks are based on conditional autoregressive simulations to derive empirical distributions for each metric where composition and configuration parameters are controlled. Our method permits the computation of probabilities that an observed metric value is either greater than or less than a given level of expectation. We also provide means for situating any landscape on a selected pattern metric-surface defined by parameters of composition and configuration. These surfaces illustrate which parameter would be most easily adjusted to effect a desired change in a selected class-focused pattern metric’s value. Implementation is fully within the R statistical computing environment.  相似文献   
10.
To further our understanding of invasive species?? novel distributions, knowledge of invasive species?? relationships with environmental variables at multiple spatial scales is paramount. Here, we investigate which environmental variables and which spatial scales best explain the invasive mute swan??s (Cygnus olor) distribution in southern Ontario (Canada). Specifically we model mute swan distribution changes according to ecologically-relevant spatial scales: average territory size radius, 140?m; median dispersal distance of cygnets, 3,000?m; and average activity distance of males, 8,000?m. For individual spatial scales, global models using variables measured at each particular scale result in the highest Akaike weights, AUC, and Cohen??s Kappa values. Yet composite models (models combining variables measured at different scales) elicit the best models, as determined by higher Akaike weights and high AUC and Cohen??s Kappa values. Overall, percent water, waterbody perimeter density, temperature, precipitation, and road density are positively correlated with mute swan distribution, while percent forest and elevation are negatively correlated at all scales of analysis. Only percent water and annual precipitation are more influential in determining mute swan distribution at the 3,000 and 8,000?m zone scales than the territory scale. While most species distribution models are performed at a single scale, the results of our study suggest that composite models reflecting a species?? ecological needs provide models of better fit with similar, if not better, predictive accuracy. When analyzing species distributions, we also recommend that ecologists consider the scale of the underlying landscape processes and the effect that this may have on their modelling outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号