首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
畜牧兽医   1篇
植物保护   4篇
  2009年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1979年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The rate of photosynthesis in intact leaves attached to plants of an atrazine-resistant cultivar of Brassica napus L. was compared with that in leaves of an atrazine-susceptible, rather isogenic cultivar, in a number of irradiance series. The resistant cultivar had been obtained from the susceptible cultivar by crossing the resistant biotype of Brassica campestris L. with the susceptible cultivar of B. napus, and using the fourth back-cross for comparison. At a natural CO2 concentration (360 cm3 m?3) the rate of photosynthesis of leaves of the atrazine-resistant cultivar was significantly (17–21%) less than that of leaves of the susceptible cultivar, over the whole range of irradiances up to 250 W m?2 At the enriched CO2 concentration of 1500 cm?3 m?3 this reduction in rate amounted to 9–12%.  相似文献   
2.
The inhibition of photosynthesis of detached black-grass leaves by chlorotoluron could be quantified by measuring the fluorescence induction using a sensor that almost fully suppressed the reflection component. The induction curve was measured twice on the same leaf spots, first after putting the leaves in the herbicide solution for 16 h, and again after placing the leaves in water for 1 day. Leaves from resistant plants showed partial to full recovery from the inhibition, while susceptible plants did not. These results for fluorescence induction were compared with the inhibition of photosynthesis rate in intact black-grass plants by chlorotoluron in the nutrient solution, and the recovery that occurred when the roots were placed again in herbicide-free nutrient solution. The similarity of the results indicates that the procedure for fluorescence induction can replace the more labour-intensive and complicated demonstration of inactivation by measuring photosynthesis rate. Each plant must be measured separately to avoid suppressing the differences between plants within a population. The method was used for samples from 22 fields in The Netherlands in which resistance of black-grass to chlorotoluron was suspected. The results indicate that substantial resistance was present in only two populations, but that weak resistance occurred in all fields. Utilisation de l'induction de fluorescence pour diagnostiquer la résistance au chlorotoluron chez le vulpin, Alopecurus myosuroides Huds. L'inhibition de la photosynthèse de feuilles de vulpin par le chorotoluron pourrait être quantifiee par la mesure de l'induction de fluorescence en utilisant un récepteur qui supprime quasiment la reflexion. La courbe d'induction était mesuree 2 fois, sur les memes fragments de feuille, la première après avoir mise pendant 16 h les feuilles dans la solution herbicide, et de nouveau après avoir placé les feuilles dans l'eau pendant un jour, Les feuilles des plantes resistantes se recuperaient partiellement à totalement de l'inhibition, tandis que les plantes sensibles ne le faisaient pas. Ces résultats sur l'induction de fluorescence ont été comparés avec le taux d'inhibition de la photosynthèse dans des plantes intactes de vulpin par le chlorotoluron dans la solution nutritive et avec la récupération qui apparaissait quand les racines étaient de nouveau placées dans une solution exempte d'herbicide, Les résultats similaires montrent que le procédé de I'induction de fluorescence peut remplacer la démonstration de l'inactivation, beaucoup plus laborieuse et compliquée par la mesure du taux de photosynthèse, Chaque plante doit être mesurée séparément pour éviter la suppression des différences entre piantes dans une population. La méthode a été utilisée pour les échantillons venant de 22 champs aux Pays-Bas dans lesquels on suspectait une résistance du vulpin au chlorotoluron. Les résultats montrent qu'une resistance réelle était seulement présente dans deux populations, mais qu'une faible résistance existait dans tous les champs. Fluorimetrische Diagnose der Resistenz von Alopecurus myosuroides Huds. (Acker-Fuchsschwanz) gegenüber Chlortoluron Die Hemmung der Photosynthese in isolierten Blättern von Acker-Fuchsschwanz durch Chlortoluron konnte durch Messung der Fluoreszenz-induktion bestimmt werden, wobei ein Sensor benutzt wurde, der die Reflektion fast vollständig ehminierte. Die Induktionskurve wurde zweimal gemessen, zum einen nach dem Einstetzen der Blätter für 16 h in die Herbizidlösung und zum andern nochmals nach einem Tag auf Wasser, Blätter resistenter Pflanzen erholten sich teilweise oder ganz von der Hemmung, solche empfindlicher Pflanzen nicht. Die Ergebnisse der Fluoreszenzinduktion wurden mit der Hemmung der Photosyntheserate intakter Pflanzen durch Chlortoluron in der Nährlösung und der Erholung nach Überführen der Wurzeln in herbizidfreie Nährlösung verglichen. Die Ähnlichkeit der Ergebnisse zeigt, daß man die arbeitsintensivere und komplizierte Bestimmung der Inaktivierung mittels Messung der Photosyntheserate durch die Fluoreszenzinduktion ersetzen kann. Jede Pflanze muß für sich gemessen werden, um ein Verwischen der Unterschiede zwischen den Pflanzen einer Population zu vermeiden. Die Methode wurde zur Untersuchung von Proben aus 22 Feldern in den Niederlanden angewandt, wo Resistenz von Acker-Fuchsschwanz gegenüber Chlortoluron vermutet wurde. Nur in 2 Populationen wurde eine volle Resistenz festgestellt, aber eine schwache Resistenz lag bei allen Fällen vor.  相似文献   
3.
A concentration of atrazine of 0?1 mm 1?1 in the nutrient solution resulted in complete inhibition of photosynthesis in intact leaves of susceptible biotypes of Amaranthus retroflexus L., Polygonum lapathifolium L., Chenopodium album L., Solanum nigrum L., Poa annua L. and Stellaria media (L.) Vill. within a few hours of treatment, whereas the inhibition of the resistant biotypes by the same concentration varied from small to moderate. In contrast, diuron (10 or 20 μm 1?1) produced only minor differences between resistant and susceptible biotypes. The influence of some other herbicides on photosynthesis of these resistant biotypes was also smaller than that on the susceptible biotypes. This cross-resistance was evaluated with the resistance factor for intact leaves of Brassica napus L., A. retroflexus, and S. nigrum. This factor is equal to the ratio of the herbicide concentration in leaves of the resistant biotype to that in leaves of the susceptible biotype with inhibition to half-maximum rate of photosynthesis. This concentration in the leaves was calculated from the concentration in the nutrient solution, and the total transpiration divided by leaf area from the beginning of the herbicide treatment until the moment of half-maximum of photosynthesis. The resistance factors for intact leaves of A. retroflexus, S. nigrum and B. napus were 26–30 for atraton, 3–7 for metamitron, 2–9 for bromacil, 3–5 for monolinuron, 1 for diuron and < 1 for bentazone. For isolated chloroplasts much higher values have been reported. The reason for this discrepancy is not clear. A somewhat higher resistance factor (around 50–60) was derived after infiltration of detached leaves of these species with atraton solutions.  相似文献   
4.
Inhibition of photosynthesis by metamitron in the rooting medium and its subsequent recovery after transfer of the roots to herbicide-free nutrient solution was measured in eight plant species. Fast and complete recovery within a few hours after treatment showed that metamitron, once absorbed, was rapidly and completely inactivated in the leaves of sugar beet (Beta vulgaris L.). Inactivation in perennial ryegrass (Lolium perenne L.) was slower and incomplete. It was low in Echinochloa crusgalli (L.) P.B., Amaranthus retroflexus L., Alopecurus myosuroides Huds. and bean (Phaseolus vulgaris L.), and undetectable in maize (Zea mays L.) and Portulaca oleracea L. From the transpiration rate and the concentration of metamitron in the nutrient solution that just did not cause inhibition of photosynthesis in sugar beet, uptake and inactivation rates per unit leaf area were calculated to be at least 18·5 ng/cm2/h. The same external concentration markedly depressed photosynthesis in the other more susceptible species. After leaf sprays sugar beet plants gradually resumed the normal rate of photosynthesis, but bean plants did not recover.  相似文献   
5.
Reason for performing study: During trot, the rider can either rise from the saddle during every stride or remain seated. Rising trot is used frequently because it is widely assumed that it decreases the loading of the equine back. This has, however, not been demonstrated in an objective study. Objective: To determine the effects of rising and sitting trot on the movements of the horse. Hypothesis: Sitting trot has more extending effect on the horse's back than rising trot and also results in a higher head and neck position. Methods: Twelve horses and one rider were used. Kinematic data were captured at trot during over ground locomotion under 3 conditions: unloaded, rising trot and sitting trot. Back movements were calculated using a previously described method with a correction for trunk position. Head‐neck position was expressed as extension and flexion of C1, C3 and C6, and vertical displacement of C1 and the bit. Results: Sitting trot had an overall extending effect on the back of horses when compared to the unloaded situation. In rising trot: the maximal flexion of the back was similar to the unloaded situation, while the maximal extension was similar to sitting trot; lateral bending of the back was larger than during the unloaded situation and sitting trot; and the horses held their heads lower than in the other conditions. The angle of C6 was more flexed in rising than in sitting trot. Conclusions and clinical relevance: The back movement during rising trot showed characteristics of both sitting trot and the unloaded condition. As the same maximal extension of the back is reached during rising and sitting trot, there is no reason to believe that rising trot was less challenging for the back.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号