首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
农学   1篇
  2篇
植物保护   2篇
  2010年   1篇
  2007年   1篇
  2001年   1篇
  2000年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Kurstjens  Perdok  Goense 《Weed Research》2000,40(5):431-447
Uprooting by weed harrowing and the potential of the uprooting process for selective weed control at early crop growth stages was studied. Effects of working depth, seed depth, soil moisture content and working speed on uprooting of Lolium perenne L., Lepidium sativum L. and Chenopodium quinoa Willd. were investigated in laboratory harrowing experiments on a sandy soil. Harrowing uprooted on average 51% of the emerging plants and 21% of the plants in the seedling stage. Seventy per cent of all uprooted plants were completely covered by soil. An increase in working depth from 10 mm to 30 mm doubled the average fraction of uprooted plants. Uprooting was also promoted by higher soil moisture contents and higher working speeds. Average uprooting selectivity (=fraction of uprooted emerging plants/fraction of uprooted seedlings of the same species) varied between 2.0 (deep tillage and high speed) and 5.6 (dry soil). If tines could keep a distance of more than 3 mm from the crop and weed plants, the average selectivity of all treatments would improve from 2.4 to 5.5 and the average fraction of uprooted seedlings would decrease from 21% to 8%. This study indicates that uprooting may be a more important weed control mechanism than commonly believed. If working depth and the path of the harrow tines in relation to crop rows could be accurately controlled, uprooting could be a relatively selective weed control mechanism at early crop growth stages.  相似文献   
2.
The impact of uprooting and covering plants on mortality and growth reduction was investigated in the laboratory using Lolium perenne L. and Lepidium sativum L. (harrowed 3–4 days after emergence) and Chenopodium quinoa Willd. (harrowed at emergence) as model weed species. Although the predominant initial effect of harrowing was to cover the plants, only 1–17% of the non-uprooted covered plants were killed because the depth at which they were buried by the harrow was shallow. Uprooting was more effective (47–61% mortality) but strongly dependent on soil moisture content. It accounted for 93 and 95% of L. sativum and C. quinoa mortality, but for only 60% of L. perenne mortality. In L. perenne , the species most sensitive to burying, a strong positive relationship was observed between the percentage of plants covered by harrowing and the fresh weight reduction of the total population 6 days after harrowing. The fresh weight reduction of the total L. sativum population was best related to the percentage of uprooted plants, but the percentage of covered plants also appeared to be a good predictor because of its correlation with uprooting. Most of the uprooted plants were also buried. The fresh weight reduction of the total C. quinoa population was not related to the covering effect of harrowing and only weakly related to the percentage of uprooted plants. The results indicate that the plant recovery process after harrowing needs further study and that field research methods should be refined so that they can better discern initial and final harrowing effects on weeds.  相似文献   
3.
The selective soil covering mechanism of weed harrows on sandy soil   总被引:1,自引:0,他引:1  
Improvement of intra-row mechanical weed control is important to reduce the reliance on herbicides in arable crops and vegetables. Covering weeds by soil is an important weed control mechanism of weed harrows. A shallow post-emergence harrow cultivation controls weeds but also damages the crop to some extent. This paper explores how plants get covered by soil and how a plant’s resistance against being covered is related to its height, flexibility and shape of leaves. Seedlings of two contrasting species were sown in bins filled with a sandy soil and harrowed by a small model harrow in the laboratory. Covering selectivity (percentage covered ryegrass/percentage covered garden cress) could be influenced by soil moisture content, working depth and working speed. Differences in covering were related to spatial patterns of plant downward bending and soil surface level upheaval. These patterns are associated with soil failure patterns near tines and soil flow patterns, connected with different effects of plant height and plant flexibility. This study indicates that relationships between weed control and crop covering may not only depend on weed and crop characteristics but also on soil conditions and implement settings. As less than 10% of the covered plants were buried deeper than 15 mm, covering would mainly cause growth reduction and little killing. Limited burial depth may be an important cause for limited weed control effectiveness of harrowing.  相似文献   
4.
Because of environmental and health safety issues, it is necessary to develop strategies that do not rely on herbicides to manage weeds. Introducing temporary grassland into annual crop rotations and mechanical weeding are the two main features that are frequently used in integrated and organic cropping systems for this purpose. To evaluate the contribution of these two factors in interaction with other cropping system components and environmental conditions, the present study updated an existing biophysical model (i.e. AlomySys) that quantifies the effects of cropping system on weed dynamics. Based on previous experiments, new sub-models were built to describe the effects on plant survival and growth reduction of mechanical weeding resulting from weed seedling uprooting and covering by soil, and those of grassland mowing resulting from tiller destruction. Additional modifications described the effect of the multi-year crop canopy of grassland on weed survival, growth, development and seed return to the soil. The improved model was used to evaluate the weed dynamics over 27 years in the conventional herbicide-based cropping system most frequently observed in farm surveys (i.e. oilseed rape/winter wheat/winter barley rotation with superficial tillage) and then to test prospective non-chemical scenarios. Preliminary simulations tested a large range of mechanical weeding and mowing strategies, varying operation frequencies, dates and, in the case of mechanical weeding, characteristics (i.e. tool, working depth, tractor speed). For mechanical weeding soon after sowing, harrowing was better than hoeing for controlling weed seed production. The later the operation, the more efficient the hoeing and the less efficient the harrowing. Tractor speed had little influence. Increasing tilling depth increased plant mortality but increased weed seed production because of additional seed germination triggering by the weeding tool. Decreasing the interrow width for hoeing was nefarious for weed control. The best combinations were triple hoeing in oilseed rape and sextuple harrowing in cereals. The best mowing strategy was mowing thrice, every 4–6 weeks, starting in mid-May. The best individual options were combined, simulated over 27 years and compared to the herbicide-based reference system. If herbicide applications were replaced solely by mechanical weeding, blackgrass infestation could not be satisfactorily controlled. If a three-year lucerne was introduced into the rotation, weed infestations were divided by ten. Replacing chisel by mouldboard ploughing before winter wheat reduced weed infestations at short, medium and long term to a level comparable to the herbicide-based reference system.  相似文献   
5.
Soil and residue manipulation can assist weed management by killing weeds mechanically, interfering in weed lifecycles, facilitating operations and enhancing crop establishment and growth. Current tillage systems often compromise these functions, resulting in heavy reliance on herbicides, particularly in no-till systems. Herbicides are an exhaustible resource, so new approaches to merge soil conservation and non-chemical weed management are needed. This paper broadly reviews various preventive and curative non-chemical weed management tactics. It also demonstrates how innovations can be derived from functional requirements of weed management operations, and from biological processes and weaknesses in weed's lifecycles. Mechanical weeding and enhancement of weed seed mortality are highlighted as examples. Major limitations with mechanical weeding include limited weed control in crop rows at early vulnerable crop stages, weather-dependent effectiveness, and difficulties in handling crop residues. Precise steering and depth control, improved seedbed friability and lighter tractors or controlled traffic could bring considerable improvements. To expose weed seeds to predators, position them for fatal germination, viability loss or low emergence may require completely different soil displacement patterns than those of current implements and systems. Controlled traffic and precise strip tillage offer good opportunities for implementing these weed management strategies in minimum-tillage systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号