首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  8篇
植物保护   4篇
  2018年   1篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1999年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The sorption behavior of diuron, imidacloprid, and thiacloprid was investigated using 22 soils collected in triplicate from temperate environments in Australia and tropical environments in Australia and the Philippines. Within the temperate environment in Australia, the soils were selected from a range of land uses. The average KOC values (L/kg) for imidacloprid were 326, 322, and 336; for thiacloprid, the values were 915, 743, and 842; and for diuron, the values were 579, 536, and 618 for the Ord (tropical), Mt. Lofty (temperate), and Philippines (tropical) soils, respectively. For all soils, the sorption coefficients decreased in the following order: thiacloprid > diuron > imidacloprid. There were no significant differences in sorption behavior between the tropical soils from the Philippines and the temperate soils from Australia. Sorption was also not significantly related with soil characteristics, namely, organic carbon (OC) content, clay content, and pH, for any of the three chemicals studied. When the data were sorted into separate land uses, the sorption of all three chemicals was highly correlated (P < 0.001) with OC for the rice soils from the Philippines. Sorption coefficients for all three chemicals were highly correlated with OC in temperate, native soils only when one extreme value was removed. The relationships between sorption of all three chemicals and OC in temperate, pasture soils were best described by a polynomial. Sorption coefficients for imidacloprid and thiacloprid determined in the temperate pasture soils remained fairly consistent as the OC content increased from 3.3 to 5.3%, indicating that, although the total OC in the pasture soils was increasing, the component of OC involved with sorption of these two compounds may have been remaining constant. This study demonstrated that the origin of the soils (i.e., temperate vs tropical) had no significant effect on the sorption behavior, but in some cases, land use significantly affected the sorption behavior of the three pesticides studied. The impact of land use on the nature of soil OC will be further investigated by NMR analysis.  相似文献   
2.
土壤中黑碳对农药敌草隆的吸附-解吸迟滞行为研究   总被引:6,自引:0,他引:6  
采用批处理振荡法和连续稀释法分别测定了敌草隆在人工添加黑碳土壤和自然形成的不同有机质和黑碳含量的土壤中的吸附一解吸行为。吸附结果表明,人工添加黑碳的土壤对敌草隆的吸附强度和吸附容量以及吸附等温线的非线性均随土壤黑碳添加浓度的增加而逐步增大;自然土壤的吸附容量和吸附强度随土壤总有机质含量增加而增加,但吸附等温线的非线性则与土壤中黑碳对有机质的相对含量有关,黑碳比例越高,等温线非线性越大。解吸实验结果表明,无论是人工添加黑碳的土壤还是自然土壤,对敌草隆的解吸迟滞作用均随土壤黑碳含量增高而愈明显。  相似文献   
3.
Hydrolysis of an insecticide/nematicide, fenamiphos [ethyl-3-methyl-4-(methylthio)phenyl-(1-methylethyl)phosphoramidate], immobilized through sorption by cetyltrimethylammonium-exchanged montmorillonite (CTMA-clay) by a soil bacterium, Brevibacterium sp., was examined. X-ray diffraction analysis, infrared spectra, and a negative electrophoretic mobility strongly indicated that fenamiphos was intercalated within the bacterially inaccessible interlayer spaces of CTMA-clay. The bacterium hydrolyzed, within 24 h, 82% of the fenamiphos sorbed by the CTMA-clay complex. There was a concomitant accumulation of hydrolysis product, fenamiphos phenol, in nearly stoichiometric amounts. During the same period, in abiotic (uninoculated) controls, 4.6% of the sorbed insecticide was released into the aqueous phase as compared to 6.0% of the sorbed fenamiphos in another abiotic control where activated carbon, a sink for desorbed fenamiphos, was present. Thus, within 24 h, the bacterium hydrolyzed 77% more fenamiphos sorbed by organo clay than the amounts desorbed in abiotic controls. Such rapid degradation of an intercalated pesticide by a bacterium has not been reported before. Evidence indicated that extracellular enzymes produced by the bacterium rapidly hydrolyzed the nondesorbable fenamiphos, even when the enzyme itself was sorbed. Fenamiphos strongly sorbed to an organo clay appears to be readily available for exceptionally rapid degradation by the bacterium.  相似文献   
4.
To better understand the environmental fate of pesticides in Sri Lankan soils, we studied the sorption behavior of two commonly used pesticides (carbofuran and diuron) in 43 surface soils representing a range of soil physicochemical properties from dry and wet zones of Sri Lanka. For carbofuran, the K(d) (L/kg) values varied from 0.11 to 4.1 (mean, 0.83; median, 0.62) and K(oc) ranged from 7.3 to 120.6 (mean, 41.65; median, 36.1), whereas for diuron K(d) values varied from 0.5 to 75 (mean, 9.6; median, 5.15) and K(oc) ranged from 55.3 to 962 (mean, 407; median, 328). A comparison of sorption data on these tropical soils with published studies (mostly European and north American soils) showed that the ranges of sorption coefficients from Sri Lankan soils were within the wide range of K(oc) values reported in the literature. However, these values for both pesticides in soils from dry zones of Sri Lanka were consistently higher (up to two times) than those from the wet zone. The wide range of K(oc) values in Sri Lankan soils may be due to the possible difference in the nature of soil organic carbon, which needs to be further investigated.  相似文献   
5.
Off-site movement of pesticides from furrow-irrigated agriculture has been a concern in the Ord River Irrigation Area, Western Australia. This paper reports on the effectiveness of incorporation of pesticides by cultivator or power harrows before irrigating, and spraying pesticides only onto beds to minimise off-site transport. Incorporation of pesticides by power harrows prior to irrigation was found to be more effective in decreasing the off-site transport of a more strongly sorbed pesticide, endosulfan. The average load of total endosulfan (alpha + beta + sulfate) decreased by 74% (P < 0.01) from 11.41 g ha(-1) from the conventionally treated bays to 2.96 g ha(-1) from the incorporated irrigation bays. The total average load of atrazine leaving the irrigation bays was decreased by 81% (P < 0.05) from 87.82 g ha(-1) under the conventional practice of spraying the whole field to 16.95 g ha(-1) by spraying the beds only. A reduction of 52% in total average load of metolachlor was observed following incorporation with power harrows, but this was not significant. Incorporation by cultivator or by power harrows decreased the total load of atrazine or metolachlor leaving the irrigation bays over the whole irrigation period, but these treatments were not shown to be statistically significant, which may have been due to the limited number of field replicates. Incorporation of strongly sorbed pesticides (e.g. endosulfan) prior to irrigation significantly decreased the off-site transport of these pesticides in a furrow irrigation system and may be a useful practice to minimise off-site transport of other similar pesticides. Minimising off-site transport of weakly sorbed pesticides (e.g. atrazine and metolachlor) from a furrow irrigation system is more difficult. The nature of furrow irrigation makes it highly conducive to pesticide transport, particularly of weakly sorbed pesticides, and further work is needed to develop strategies to minimise the movement of this group of pesticides to water bodies.  相似文献   
6.
Although the chemical composition of soil organic matter (SOM) is known to significantly influence sorption of pesticides and other pollutants, it has been difficult to determine the molecular nature of SOM in situ. Here, using 13C nuclear magnetic resonance (NMR) data and elemental composition in a molecular mixing model, we estimated the molecular components of SOM in 24 soils from various agro‐ecological regions. Substantial variations were revealed in the molecular nature of SOM. As a proportion of soil carbon the proportion of the carbonyl component ranged from 0.006 to 0.05, charcoal from 0 to 0.15, protein from 0.09 to 0.29, aliphatic from 0.14 to 0.30, carbohydrate from 0.21 to 0.31, and lignin from 0.05 to 0.42. The relationships between Koc (sorption per unit mass of organic carbon) of carbaryl (1‐naphthyl methylcarbamate) and phosalone (S‐6‐chloro‐2,3‐dihydro‐2‐oxobenzoxazol‐3‐ylmethyl O,O‐diethyl phosphorodithioate) and the molecular nature of organic matter in the soils were significant. Of the molecular components estimated, lignin and charcoal contents correlated best with sorption of carbaryl and phosalone. Aliphatic, carbohydrate and protein contents were found to be negatively correlated with the Koc of both pesticides. The study highlights the importance of the molecular nature of SOM in determining sorption affinities of non‐ionic pesticides and presents an indirect method for sorption estimation of pesticides.  相似文献   
7.
Sorption and desorption behaviors of diuron in soils amended with charcoal   总被引:1,自引:0,他引:1  
Charcoal derived from the partial combustion of vegetation is ubiquitous in soils and sediments and can potentially sequester organic contaminants. To examine the role of charcoal in the sorption and desorption behaviors of diuron pesticide in soil, synthetic charcoals were produced through carbonization of red gum (Eucalyptus spp.) wood chips at 450 and 850 degrees C (referred to as charcoals BC450 and BC850, respectively, in this paper). Pore size distribution analyses revealed that BC850 contained mainly micropores (pores approximately 0.49 nm mean width), whereas BC450 was essentially not a microporous material. Short-term equilibration (< 24 h) tests were conducted to measure sorption and desorption of diuron in a soil amended with various amounts of charcoals of both types. The sorption coefficients, isotherm nonlinearity, and apparent sorption-desorption hysteresis markedly increased with increasing content of charcoal in the soil, more prominently in the case of BC850, presumably due to the presence of micropores and its relatively higher specific surface area. The degree of apparent sorption-desorption hystersis (hysteresis index) showed a good correlation with the micropore volume of the charcoal-amended soils. This study indicates that the presence of small amounts of charcoal produced at high temperatures (e.g., interior of wood logs during a fire) in soil can have a marked effect on the release behavior of organic compounds. Mechanisms of this apparent hysteretic behavior need to be further investigated.  相似文献   
8.
Journal of Soils and Sediments - A comparison was made between three chemical methods to predict bioaccessibility of triclosan (TCS), bisphenol A (BPA), and 17α-ethynylestradiol (EE2) in...  相似文献   
9.
Organophosphorus, pyrethroid and chloronicotinyl insecticides have been used to control termites in building structures in recent years. We investigated the degradation behaviour of three insecticides (bifenthrin, chlorpyrifos and imidacloprid) at termiticidal application rates under standard laboratory conditions (25 °C, 60% field moisture capacity and darkness) for 24 months. The study was carried out on one soil and two bedding materials (sand-dolomite and quarry sand), which are commonly used under housing in Australia. Experiments were also conducted to examine the effect of soil moisture on the degradation of these insecticides. Insecticide residues in the samples collected at different days after application were measured by high performance liquid chromatography (HPLC). The rate of degradation of bifenthrin and imidacloprid insecticides was adequately described by a first-order kinetic model (r2 = 0.93–0.97). However, chlorpyrifos degradation was biphasic, showing an initial faster degradation followed by a slower rate. Therefore, the degradation data during the slower phase only (after a two-month period) followed the first-order law (r2 = 0.95). Soil moisture had little effect on degradation of imidacloprid and bifenthrin. Among the three insecticides, bifenthrin and imidacloprid were most stable and chlorpyrifos the least. Chlorpyrifos showed a major loss (75–90%) of residue during the 24 months incubation period. In the bedding materials, simultaneous accumulation of the primary metabolite of chlorpyrifos, TCP (3,5,6-trichloro-2-pyridinol) was observed. Hydrolysis appeared to have caused the observed rapid loss of chlorpyrifos, especially in the highly alkaline bedding materials (sand-dolomite and quarry sand). © 1999 Society of Chemical Industry  相似文献   
10.
This study explored the potential of mid-infrared spectroscopy (MIR) with partial least-squares (PLS) analysis to predict sorption coefficients (Kd) of pesticides in soil. The MIR technique has the advantage of being sensitive to both the content and the chemistry of soil organic matter and mineralogy, the important factors in the sorption of nonionic pesticides. MIR spectra and batch Kd values of atrazine were determined on a set of 31 soil samples as reference data for PLS calibration. The samples, with high variability in soil organic carbon content (SOC), were chosen from 10 southern Australian soil profiles (A1, A2, B, and C in one case). PLS calibrations, developed for the prediction of Kd from the MIR spectra and reference Kd data, were compared with predictions from Koc-based indirect estimation using SOC content. The reference Kd data for the 31 samples ranged from 0.31 to 5.48 L/kg, whereas Koc ranged from 30 to 680 L/kg. Both coefficients generally increased with total SOC content but showed a relatively poor coefficient of determination (R2 = 0.53; P > 0.0001) and a high standard error of prediction (SEP =1.22) for the prediction of Kd from Koc. This poor prediction suggested that total SOC content alone could explain only half of the variation in Kd. In contrast, the regression plot of PLS predicted versus measured Kd resulted in an improved correlation, with R2 = 0.72 ( P > 0.0001) and standard error of cross-validation (SECV) = 0.63 for three PLS factors. With the advantages of MIR-PLS in mind, (i) more accurate prediction of Kd, (ii) an ability to reflect the nature and content of SOC as well as mineralogy, and (iii) high repeatability and throughput, it is proposed that MIR-PLS has the potential for an improved and rapid assessment of pesticide sorption in soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号