首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  1篇
农作物   1篇
植物保护   4篇
  2021年   1篇
  2018年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
European Journal of Plant Pathology - Cyst nematodes are sedentary endoparasites of plants which cause important economic losses worldwide. New nematode control measures are needed since the...  相似文献   
2.
We investigated the influence of earthworm (Aporrectodea giardi) activity on soil properties and on atrazine (AT) adsorption and biodegradation by comparing a coarse‐textured smectite‐free wetland soil (Brittany, France) with the earthworm casts derived from the top horizon of this soil. Casts are characterized by lower pH, are enriched in organic carbon (OC) and clay content, have a larger cation exchange capacity, and a greater exchangeable Ca content. The clay mineralogy of the soil studied and casts is characterized by a muscovite–kaolinite–chlorite association. In addition, the clay fraction of the soil contains lepidocrocite (γ‐FeOOH), which was not found in the casts. Atrazine adsorption isotherms were reasonably well described by the Freundlich equation and were all non‐linear. The mean amounts of adsorbed AT for starting concentrations of 3–30 mg litre?1 ranged from 8 to 34%, being largest in earthworm casts. Soil AT adsorption capacity was well correlated with OC content. Non‐decomposed organic matter present in the coarse size fractions and specific compounds present in earthworm casts (proteins, mono‐ and polysaccharides, polyphenols, sugars, lignin) and microbial and fungal biomass contribute to AT adsorption. Weak electrostatic (physical) sorption of AT on organic compounds and on mineral surfaces prevails. For casts, the formation of additional hydrophobic interactions between AT and SOM is proposed. We also studied AT biodegradation by the model bacterium Pseudomonas sp. strain ADP in the presence of soils or earthworm casts. An enhancement of the AT disappearance rate was observed in the presence of all the solid matrices tested compared with that obtained in an aqueous medium. The biodegradation rate was shown to be dependent not only on the OC content of the solid matrix, but mainly on its composition and structure.  相似文献   
3.
Studying phenotypic and genomic modifications associated with pathogen adaptation to resistance is a crucial step to better understand and anticipate resistance breakdown. This short review summarizes recent results obtained using experimentally evolved populations of the potato cyst nematode Globodera pallida. In a first step, the variability of resistance durability was explored in four different potato genotypes carrying the resistance quantitative trait loci (QTL) GpaVvrn originating from Solanum vernei but differing by their genetic background. The consequences of the adaptation to resistance in terms of local adaptation, cross-virulence and virulence cost were then investigated. Finally, a genome scan approach was performed in order to identify the genomic regions involved in this adaptation. Results showed that nematode populations were able to adapt to the QTL GpaVvrn, and that the plant genetic background has a strong impact on resistance durability. A trade-off between the adaptations to different resistant potato genotypes was detected, and we also showed that adaptation to the resistance QTL GpaVvrn from S. vernei did not allow adaptation to the colinear locus from S. sparsipilum (GpaVspl). Unexpectedly, the adaptation to resistance led to an increase of virulent individual’s fitness on a susceptible host. Moreover, the genome scan approach allowed the highlighting of candidate genomic regions involved in adaptation to host plant resistance. This review shows that experimental evolution is an interesting tool to anticipate the adaptation of pathogen populations and could be very useful for identifying durable strategies for resistance deployment.  相似文献   
4.
BACKGROUND: Management of grapevine powdery mildew Erysiphe necator Schw. requires fungicide treatments such as sterol demethylation inhibitors (DMIs) or mitochondrial inhibitors (QoIs). Recently, reduction in the efficacy of DMIs or QoIs was reported in Europe and the United States. The aim of the present study was to develop real‐time qPCR tools to detect and quantify several CYP51 gene variants of E. necator: (i) A versus B groups (G37A) and (ii) sensitive versus resistant to sterol demethylase inhibitor fungicides (Y136F). RESULTS: The efficacy of the qPCR tools developed was better than the CAPS method, with a limit of 2 pg for E necator DNA, 0.06 ng for genetic group A and 1.4 ng for the DMI‐resistant allele. The detection limits of qPCR protocols (LOD) ranged from 0.72 to 0.85%, and the quantification limits (LOQ) ranged from 2.4 to 2.85% for the two alleles G47A and Y136F respectively. The application of qPCR to field isolates from French vineyards showed the presence of DMI‐resistant and/or QoI‐resistant alleles in French pathogen populations, linked to genetic group B. CONCLUSION: The real‐time PCR assay developed in this study provides a potentially useful tool for efficient quantification of different alleles of interest for fungicide monitoring and for population structure of E. necator. Copyright © 2010 Society of Chemical Industry  相似文献   
5.
ABSTRACT The use of partially resistant cultivars should become an essential component of a sustainable management strategy of potato late blight, caused by Phytophthora infestans. It is therefore important to determine to what extent P. infestans populations can be selected for increased aggressiveness by potato cultivars with different levels of partial resistance. To this end, we sampled P. infestans populations from France and Morocco, chosen as locations where late blight occurs regularly but which differ in the distribution of potato cultivars. Cross-inoculation experiments were used to determine the aggressiveness of all populations to potato cvs. Bintje (prevalent in France but not grown in Morocco) and Désirée (popular in Morocco but cultivated to a very small extent in France). French populations were more aggressive on cv. Bintje than on cv. Désirée, irrespective of the site they were sampled from. Their aggressiveness increased between early and late samplings, suggesting that both cultivars selected for increased aggressiveness during epidemics. By contrast, Moroccan populations were more aggressive on Désirée, regarded as partially resistant in Europe, than on Bintje, highly susceptible under European conditions. These data indicate that P. infestans populations adapt to locally dominant cultivars, irrespective of their resistance levels, and can therefore overcome polygenic, partial resistance. This adaptive pattern may render partial resistance nondurable if not properly managed.  相似文献   
6.
The discovery of genetically distinct Erysiphe necator groups (A or B), with high phenotypic similarities, raises important questions about their coexistence. For plant pathogens, niche partitioning, allowing the coexistence on the same host (i.e. the same resource), might result from separation in space and/or time. We used a landscape genetic approach to study the geographic distribution of genetic groups of E. necator (distinguished by a SNP in the β-tubulin gene) at the spatial scale of the Languedoc-Roussillon region (southern France) and to assess the temporal succession of groups along the course of the 2007 epidemic. Spatial distribution revealed a high heterogeneity between vineyards: from 100% B to 100% A, with 62% and 38% of vineyards showing a majority of A and B isolates, respectively. Temporal isolation seems to be the major mechanism in the coexistence of the two genetic groups: all isolates collected towards the end of the epidemic belonged to group B, whatever the initial frequency of genetic groups. Our results confirm that both A or B isolates can lead to flag-shoot symptoms, and showed that group A isolates tend to disappear during the course of the epidemic, whereas group B isolates may be active during the entire epidemic and involved in further production of cleistothecia, when recombination takes place. For the first time, the relationship between the frequency of genetic groups and disease levels on leaves and clusters at the end of the epidemic was evaluated. We showed a strong relationship between the disease severity and the genetic composition of E. necator populations: the damage was more important when the epidemic was initiated by B isolates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号