首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
农学   2篇
  1篇
农作物   3篇
园艺   1篇
植物保护   35篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2002年   2篇
  2001年   4篇
  2000年   6篇
  1998年   4篇
  1996年   1篇
  1983年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Assessment of partial resistance to powdery mildew in Chinese wheat varieties   总被引:10,自引:0,他引:10  
D. Z. Yu    X. J. Yang    L. J. Yang    M. J. Jeger  J. K. M. Brown   《Plant Breeding》2001,120(4):279-284
Field trials in two cropping seasons and two locations in central China were conducted on 60 Chinese autumn‐sown wheat varieties to assess their partial resistance to powdery mildew. Mean levels of disease severity ranged from close to 0 to more than 90%. The method of inoculation and the location in which trials were conducted affected the relative performance of the varieties, but these effects were much smaller than the main effect of variety. The area under the disease progress curve was highly correlated with final disease severity, but both were poorly correlated with apparent infection rate. Disease severity was regressed against frequencies of virulence in the Blumeria graminis (syn. Erysiphe graminis) f sp. tritici populations in the trial plots. A vertical distance (D) from the mean mildew severity to the fitted line was calculated for each variety and was used to quantify partial resistance. Five of the 60 varieties, ‘Hx8541’, ‘E28547’, ‘Chuan1066’, ‘Zhe88pin6’ and ‘Lin5064’, consistently expressed relatively low levels of disease despite high frequencies of virulence in the pathogen and had consistently high D‐values. They may therefore have good levels of partial resistance.  相似文献   
2.
3.
Jeger  Gilijamse  Bock  & Frinking 《Plant pathology》1998,47(5):544-569
Sorghum downy mildew ( Peronosclerospora sorghi ) infecting sorghum and maize, and pearl millet downy mildew ( Sclerospora graminicola ) infecting pearl millet can cause considerable yield loss in Africa. The last 15 years have witnessed an increase in knowledge of the biology, epidemiology and control of these two pathogens. Much information has been obtained on the effect of environmental factors on disease epidemiology, spore production and dispersal. Molecular techniques applied to study pathogenic variability have aided in defining relationships among these pathogens, although scope of the work is limited. Knowledge of the genetics and inheritance of resistance, and of resistance mechanisms, has also increased. This review presents the current state of knowledge of both downy mildew pathogens, with focus on their status on sorghum and pearl millet in Africa. Despite the advances in knowledge over the last 15 years, these downy mildews remain important constraints to sustainable crop production in the semi-arid regions of Africa. In some cases information obtained in Asia and the Americas can be extrapolated to Africa but care must be taken in ensuring its applicability. Priorities for future research relevant for Africa are proposed and discussed.  相似文献   
4.
Xu XM  Jeffries P  Pautasso M  Jeger MJ 《Phytopathology》2011,101(9):1032-1044
Effective use of biocontrol agents is an important component of sustainable agriculture. A previous numerical study of a generic model showed that biocontrol efficacy was greatest for a single biocontrol agent (BCA) combining competition with mycoparasitism or antibiosis. This study uses the same mathematical model to investigate whether the biocontrol efficacy of combined use of two BCAs with different biocontrol mechanisms is greater than that of a single BCA with either or both of the two mechanisms, assuming that two BCAs occupy the same host tissue as the pathogen. Within the parameter values considered, a BCA with two biocontrol mechanisms always outperformed the combined use of two BCAs with a single but different biocontrol mechanism. Similarly, combined use of two BCAs with a single but different biocontrol mechanism is shown to be far less effective than that of a single BCA with both mechanisms. Disease suppression from combined use of two BCAs was very similar to that achieved by the more efficacious one. As expected, a higher BCA introduction rate led to increased disease suppression. Incorporation of interactions between two BCAs did not greatly affect the disease dynamics except when a mycoparasitic and, to a lesser extent, an antibiotic-producing BCA was involved. Increasing the competitiveness of a mycoparasitic BCA over a BCA whose biocontrol mechanism is either competition or antibiosis may lead to improved biocontrol initially and reduced fluctuations in disease dynamics. The present study suggests that, under the model assumptions, combined use of two BCAs with different biocontrol mechanisms in most cases only results in control efficacies similar to using the more efficacious one alone. These predictions are consistent with published experimental results, suggesting that combined use of BCAs should not be recommended without clear understanding of their main biocontrol mechanisms and relative competitiveness, and experimental evaluation.  相似文献   
5.
Loss of zoospores has happened independently several times in different phylogenic lines and has, it is claimed, no major phylogenetic significance. But whether or not, how, and under which conditions plant pathogens retain the ability to produce motile asexual spores has fundamental importance from an ecological and epidemiological perspective. Recent molecular investigations of the early evolution of fungi and oomycetes are shedding light on the issue of zoospore loss in organisms able to cause plant diseases. Zoospore loss may have accompanied the development of new forms of dispersal adapted to the terrestrial environment, or the simplification processes which often follow the shift to parasitic or biotrophic life-forms. In this review we consider hybridisation events between Phytophthora species, long distance dispersal of oomycetes, sporangia and zoospore survival, direct and indirect infection processes and newly observed sporulating structures. These aspects are all relevant features for an understanding of the epidemiology of zoosporic plant pathogens. Disease management should not be based on the presumption that the zoosporic stage is a weak link in the life cycle. Oomycete plant pathogens show remarkable flexibility in their life cycles and ability to adapt to changing environmental circumstances.
Mike J. JegerEmail:
  相似文献   
6.
The horticultural sector has seen much structural change both nationally and internationally over the last decades, but the implications for plant health have been neglected. We review in the context of the risk of emerging plant diseases recent developments including the movement towards a global horticultural market, the rise of the horticultural industry of many developing countries, and the economic integration of the European Union. North America is typically well ahead of other regions in economic developments, and in horticulture this is shown for example by the growing importance of Mexican growers. Asia is rapidly catching up also in horticulture, with China and India becoming key producers. Australia and New Zealand show the impact of change in horticulture extension services. The Eastern enlargement of the EU is having profound influences on fruit and vegetable growers both in the new and in the old member countries. Similar developments are taking place in South America and Africa. In all continents, there is a general trend towards fewer and larger horticultural growers, an increasing role of supermarkets and a concentration of the retail pathways. These developments have consequences for the control of plant pathogens and invasive species. Technical issues seem to be of lesser consequence in terms of structural change compared with labour and trade aspects. However, examples can be found where technical innovations have opened up new opportunities or provided solutions to pressing problems, as can be seen in the hardy nursery stock and ornamental industry in the UK. Future technical, economic and social impacts on the sector are likely to play a key role for securing a diverse and reliable food supply for the still expanding world's population. Recent advances in modelling disease spread in complex networks representing trade pathways should be used to target control of introductions of new plant pathogens. There is a need for more long-term research on how structural change in the horticultural sector will affect and be affected by climate change.  相似文献   
7.
8.
Experiments in controlled environments were carried out to determine the effects of temperature and leaf wetness duration on infection of oilseed rape leaves by conidia of the light leaf spot pathogen, Pyrenopeziza brassicae . Visible spore pustules developed on leaves of cv. Bristol inoculated with P. brassicae conidia at temperatures from 4 to 20°C, but not at 24°C; spore pustules developed when the leaf wetness duration after inoculation was longer than or equal to approximately 6 h at 12–20°C, 10 h at 8°C, 16 h at 6°C or 24 h at 4°C. On leaves of cvs. Capricorn or Cobra, light leaf spot symptoms developed at 8 and 16°C when the leaf wetness duration after inoculation was greater than 3 or 24 h, respectively. The latent period (the time period from inoculation to first spore pustules) of P. brassicae on cv. Bristol was, on average, approximately 10 days at 16°C when leaf wetness duration was 24 h, and increased to approximately 12 days as temperature increased to 20°C and to 26 days as temperature decreased to 4°C. At 8°C, an increase in leaf wetness duration from 10 to 72 h decreased the latent period from approximately 25 to 16 days; at 6°C, an increase in leaf wetness duration from 16 to 72 h decreased the latent period from approximately 23 to 17 days. The numbers of conidia produced were greatest at 12–16°C, and decreased as temperature decreased to 8°C or increased to 20°C. At temperatures from 8 to 20°C, an increase in leaf wetness duration from 6 to 24 h increased the production of conidia. There were linear relationships between the number of conidia produced on a leaf and the proportion of the leaf area covered by 'lesions' (both log10-transformed) at different temperatures.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号