首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
林业   5篇
农学   3篇
  34篇
综合类   2篇
农作物   6篇
水产渔业   5篇
畜牧兽医   3篇
园艺   1篇
植物保护   8篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   7篇
  2007年   7篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
1.
The objective of this study was to screen wild and domesticated tomatoes for resistance to Tomato yellow leaf curl virus, Israel (TYLCV-Is) and Tomato leaf curl virus from Bangalore isolate 4, India (ToLCV-[Ban4]) to find sources of resistance to both viruses. A total of 34 tomato genotypes resistant/tolerant to TYLCV-Is were screened for resistance to ToLCV-[Ban4] under glasshouse and field conditions at the University of Agricultural Sciences, Bangalore, India. Resistance was assessed by criteria like disease incidence, symptom severity and squash-blot hybridization. All the tomato genotypes inoculated with ToLCV-[Ban4] by the whitefly vector Bemisia tabaci (Gennadius) produced disease symptoms. In some plants of the lines 902 and 910, however, the virus was not detected by hybridization. The tomato genotypes susceptible to ToLCV-[Ban4] by whitefly-mediated inoculation were also found susceptible to the virus under field conditions. However, there were substantial differences between genotypes in disease incidence, spread, symptom severity and crop yield. Despite early disease incidence, many genotypes produced substantially higher yields than the local hybrid, Avinash-2. Sixteen tomato genotypes from India resistant/tolerant to ToLCV-[Ban4] were also tested for TYLCV-Is resistance at the Hebrew University of Jerusalem, Rehovot, Israel. Accessions of wild species, Lycopersicon hirsutum LA 1777 and PI 390659 were the best sources of resistance to both viruses. Lines 902 and 910, which were, resistant to TYLCV-Is were only tolerant to ToLCV-[Ban4] and accession Lycopersicon peruvianum CMV Sel. INRA, resistant to ToLCV-[Ban4], was only tolerant to TYLCV-Is. Implications of using the resistant lines in breeding programme is discussed.  相似文献   
2.
The effect of fermentation on the antioxidant compounds [vitamins C and E, total phenolic compounds (TPC), and reduced glutathione (GSH)], and antioxidant capacity [superoxide anion scavenging activity (SOD-like activity), peroxyl radical-trapping capacity (PRTC), inhibition of phosphatidylcholine (PC) peroxidation, and Trolox equivalent antioxidant capacity (TEAC)] of soybean (Glycine max cv. Merit) was studied. Fermentation was carried out in solid state in cracked seeds inoculated with Aspergillus oryzae, Rhizopus oryzae, Bacillus subtilis, and Lactobacillus plantarum and in liquid state either in cracked seeds or milled soybean flours fermented naturally by only the microorganisms present in the seeds or by inoculation with L. plantarum. Vitamin C was not detected in the studied samples. Fermentation caused a decrease in vitamin E activity, except when cracked seed was fermented with A. oryzae, R. oryzae, or B. subtilis that increased 31, 30, and 89%, respectively. Fermentation produced an increase in TPC content and did not affect or reduce the GSH content. Fermentation decreased SOD-like activity drastically, while PRTC increased except when it was carried out naturally in cracked seed. TEAC values rose sharply when soybeans were fermented with B. subtilis. Processed soybean extracts inhibited PC peroxidation in comparison with the control assay. On the basis of the results obtained, the relative contributions of vitamin E, TPC, and GSH to antioxidant capacity were calculated and results showed a very high TPC contribution and a low contribution of GSH and vitamin E activity. Optimum results for functional soybean flours were achieved when fermentation was carried out with B. subtilis inoculum.  相似文献   
3.
Cowpea (Vigna sinensis L. var. Carilla) flours obtained by fermentation with inoculum Lactobacillus plantarum (PF) or with the natural microorganisms present in the flour (NF) and subsequent heat treatment in an autoclave were prepared to study the effect of fermentation on the antioxidant vitamin content and on the antioxidant capacity. Bacterial counts and pH values, vitamins C and E, carotenoids, glutathione (GSH), superoxide dismutase-like activity (SOD-like activity), peroxyl radical-trapping capacity (PRTC), lipid peroxidation in unilamillar liposomes, and Trolox equivalent antioxidant capacity (TEAC) were evaluated in raw and processed cowpea flours. gamma-Tocopherol and delta-tocopherol were found in raw cowpea, whereas vitamin C and carotenoids were not detected. An increase in the vitamin E activity was observed in PF, whereas vitamin C and carotenoids were not detected in fermented cowpea flours. Fermentation or heat treatment in an autoclave after fermentation produced processed cowpea flours with lower PRTC, glutathione content, and SOD-like activity than those of the raw seeds. However, those processes increased the capacity to inhibit the lipid peroxidation in unilamellar lipoposomes and TEAC. According to the results obtained in this study, the fermentation of cowpeas (naturally or with L. plantarum) and fermentation and subsequent heat treatment in an autoclave are good processes to obtain functional cowpea flours having higher antioxidant capacity than the raw legume.  相似文献   
4.
The protective impact of aggregation on microbial degradation through separation has been described frequently, especially for biotically formed aggregates. However, to date little information exists on the effects of organic‐matter (OM) quantity and OM quality on physical protection, i.e., reduced degradability by microorganisms caused by physical factors. In the present paper, we hypothesize that soil wettability, which is significantly influenced by OM, may act as a key factor for OM stabilization as it controls the microbial accessibility for water, nutrients, and oxygen in three‐phase systems like soil. Based on this hypothesis, the first objective is to evaluate new findings on the organization of organo‐mineral complexes at the nanoscale as one of the processes creating water‐repellent coatings on mineral surfaces. The second objective is to quantify the degree of alteration of coated surfaces with regard to water repellence. We introduce a recently developed trial that combines FTIR spectra with contact‐angle data as the link between chemical composition of OM and the physical wetting behavior of soil particles. In addition to characterizing the wetting properties of OM coatings, we discuss the implications of water‐repellent surfaces for different physical protection mechanisms of OM. For typical minerals, the OM loading on mineral surfaces is patchy, whereas OM forms nanoscaled micro‐aggregates together with metal oxides and hydroxides and with layered clay minerals. Such small aggregates may efficiently stabilize OM against microbial decomposition. However, despite the patchy structure of OM coating, we observed a relation between the chemical composition of OM and wettability. A higher hydrophobicity of the OM appears to stabilize the organic C in soil, either caused by a specific reduced biodegradability of OM or indirectly caused by increased aggregate stability. In partly saturated nonaggregated soil, the specific distribution of the pore water appears to further affect the mineralization of OM as a function of wettability. We conclude that the wettability of OM, quantified by the contact angle, links the chemical structure of OM with a bundle of physical soil properties and that reduced wettability results in the stabilization of OM in soils.  相似文献   
5.
The study compares lyophilized broccoli sprouts and florets in terms of their chemical composition, cytotoxic and proapoptotic potential against hepatocellular carcinoma HepG2, colorectal cancer SW480, and skin fibroblast BJ cells. Sinapic and isochlorogenic acids were predominant phenolics in the sprouts and florets, respectively. The amount of sulforaphane in the sprouts was significantly higher vs. florets. Oleic and linoleic acids dominated in the sprouts, while caproic, stearic and oleic acids in the florets. Broccoli sprouts were selectively cytotoxic on HepG2 and SW480 cells, with proapoptotic effect for the latter, while the florets were less selective, but more active, with profound proapoptotic effect for HepG2 cells (77.4%). Thus, lyophilized broccoli sprouts may be effectively used in dietary chemoprevention.  相似文献   
6.
7.
Ultrasound approach has been used to assess morphology of the gonadal structure in the sex-reversed rainbow trout females (neomales) provided in the course of 11β-hydroxyandrostenedione treatment applied within gonadal differentiation period. Eighteen matured individuals (in range 38.0–48.6 cm of body length and 802–1644 g of body weight) were scanned using digital ultrasound apparatus (DP-6900 model) Mindray Ltd., during the spawning season. After screening, fishes were killed to validate the morphological configuration and position of the gonads in the body cavity. The favorable place for cross-sectional imaging of gonadal lobes was half of the distance between the pectoral and pelvic fins below lateral line of neomales. Most of the examined specimens (61 %) had properly shaped, paired testis. Moreover, presence of individuals with asymmetrical gonads (33 %) and one bisexual fish was confirmed. There were no differences between total volume of sampled semen and sperm motility, but statistically significantly different in sperm concentration within selected (with symmetrical and asymmetrical testis) groups of neomales. It was confirmed that ultrasonic imaging is an efficient and accurate method to determine the state of gonads of mature sex-reversed rainbow trout females during spawning season and offers the opportunity for non-invasive detection of any morphological anomalies in their gonads.  相似文献   
8.
The effect of Chenopodium quinoa seeds on lipid profile, glucose level, protein metabolism and selected essential elements (Na, K, Ca, Mg) level was determined in high—fructose fed male Wistar rats. Fructose decreased significantly LDL [42%, p < 0.01] and activity of alkaline phosphatase [20%, p < 0.05], and increased triglycerides level [86%, p < 0.01]. The analysis of blood of rats fed quinoa indicated, that these seeds effectively reduced serum total cholesterol [26%, p < 0.05], LDL [57%, p < 0.008] and triglycerides [11%, p < 0.05] when compared to the control group. Quinoa seeds also significantly reduced the level of glucose [10%, p < 0.01] and plasma total protein level [16%, p < 0.001]. Fructose significantly decreased HDL [15%, p < 0.05] level in control group but when the quinoa seeds were added into the diet the decrease of HDL level was inhibited. Quinoa seeds did not prevent any adverse effect of increasing triglyceride level caused by fructose. It was shown in this study that quinoa seeds can reduce most of the adverse effects exerted by fructose on lipid profile and glucose level.  相似文献   
9.
In this work, we evaluated the effect of harmful ecotoxins, 4,5,6-trichloroguaicol (4,5,6-TCG) and tetrachloroguaiacol (TeCG), on the oxidation of the fluorescent probe dihydrorhodamine 123, the content of free phenols and the level of the total, oxidized and reduced glutathione in the leaves of reed canary grass (Phalaris arudinacea). Furthermore, the effect on the activity of guaiacol peroxidase and glutathione S-transferase was investigated. Both 4,5,6-TCG and TeCG increased the activity of guaiacol peroxidase and glutathione S-transferase, they also elevated the content of free phenols and the level of the total glutathione. A stronger effect was exerted by tetrachloroguaiacol, which strongly increased the level of the total glutathione and the content of free phenols on the 3rd and 6th day of the experiment. The activity of glutathione S-transferase was more intensively induced by trichloroguaiacol. Both 4,5,6-TCG and TeCG oxidized dihydrorodamine 123 and the effect was stronger in the presence of magnesium ions.  相似文献   
10.
The purpose of this study was to examine the reduced and oxidized glutathione status of selected cereal grains as a potential index of balance between oxidative stress and antioxidant systems, and the contribution of reduced glutathione to the total antioxidant status in cereal grain extracts. Wheat cultivars Almari and Henika, barley cultivars Gregor and Mobek, rye cultivar Dañkowskie Złote, oat cultivar Sławko, and buckwheat cultivar Kora were used. Total antioxidant status (TAS) was measured by the ABTS (2,2'-azinobis(3-ethyl-benzothiazoline-6-sulphonate)) method. Contents of total phenolic compounds were also determined. Reduced (GSH) and oxidized glutathione (GSSG) (γ-glutamyl-cysteinyl-glycine) were assayed using the spectrofluorimetric method, and results were confirmed by the enzyme recycling method. Correlation coefficient for the GSH/GSSG ratio was r = 0.79. Correlation between TAS and the total phenolic compound content was r = 0.81. Correlation between GSH/GSSG ratio and TAS values was r= 0.46, depending on the extraction system used. The GSH/GSSG ratio may indicate a hierarchy among different cultivars and variance of cereal grains against damage caused by reactive oxygen species. For the main water-soluble antioxidants, our data indicate a potential hierarchy of resistance in investigated cereals against oxidative stress (buckwheat > wheat > barley ≈ rye > oat). This hierarchy was confirmed by the ability of investigated cereal extracts to scavenge superoxide anion radicals in vitro. The reduced-oxidized glutathione status in different cereal grains can be applied as a potential index of balance between oxidative stress and antioxidant systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号