首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   5篇
林业   1篇
农学   1篇
  21篇
综合类   1篇
农作物   1篇
水产渔业   6篇
畜牧兽医   3篇
植物保护   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   1篇
  2013年   13篇
  2012年   2篇
  2007年   1篇
  2006年   1篇
  1989年   2篇
  1988年   2篇
  1983年   1篇
  1978年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
Haemonchus contortus is a parasite of major economic importance of most sheep-rearing areas of the world. A cross-sectional study was conducted from November 2015 to March 2016 with objectives of determining the prevalence and associated risk factors of Haemonchus contortus infection in sheep slaughtered at Jimma town municipal abattoir, Ethiopia. Of the total 7000 sheep slaughtered during the study time period, 384 sheep were randomly selected and examined for parasites. The overall prevalence of Haemonchus contortus infection was 264 (68.75%). Infection rate of poor body condition animals was significantly (P?=?0.000) higher than good body conditioned animals. The mean packed cell volume (PCV) values (%) of parasitemic and aparasitemic sheep were 23.73?±?3.7 SD and 37.66?±?4.736 SD, respectively. The prevalence in adult sheep (>?1 year) was insignificantly (P?=?0.653) higher than that of young sheep (≤?1 year). The highest prevalence was recorded in sheep that originated from Seka district (73.3%) and the lowest in Kersa district (63.4%) with non-significant variation (P?=?0.691). The highest monthly mean worm burdens and prevalence of Haemonchus contortus infection were recorded in November and lowest in March. The current study revealed that Haemonchus contortus infection is an important and common parasitic disease and requires special attention to its control.  相似文献   
2.
High phosphate (Pi) sorption in soils is a serious limiting factor for plant productivity and Pi fertilization efficiency, particularly in highly weathered and volcanic ash soils. In these soils, the sorbed Pi is so strongly held on the surfaces of reactive minerals that it is not available for plant root uptake. The use of phosphate-solubilizing microorganisms (PSM) capable of Pi desorption seems to be a complementary alternative in the management of these soils. The aim of this study was to evaluate the effectiveness of the soil fungus Mortierella sp., a known PSM, to desorb Pi from four soil minerals differing in their Pi sorption capacity. The fungus was effective in desorbing Pi from all tested minerals except from allophane, and its desorption depended on the production of oxalic acid. The effectiveness of the fungus to desorb Pi was ranked as montmorillonite > kaolinite > goethite > allophane. The quantity of desorbed Pi increased by increasing the amount of sorbed Pi. The Pi sorption capacity expressed as P0.2 value (amount of P required to increase a solution P concentration up to 0.2 mg L?1) was a good indicator of the effectiveness of Mortierella sp. to desorb Pi from soil minerals.  相似文献   
3.
A survey was conducted into respiratory infectious diseases of poultry on a chicken breeder farm run by the Ethiopian Institute of Agricultural Research (EIAR), located in Debre Zeit, Ethiopia. Oropharyngeal swabs were collected from 117 randomly selected birds, and blood was taken from a subset of 73 of these birds. A combination of serological and molecular methods was used for detection of pathogens. For the first time in Ethiopia, we report the detection of variant infectious bronchitis virus (793B genotype), avian metapneumovirus subtype B and Mycoplasma synoviae in poultry. Mycoplasma gallisepticum was also found to be present; however, infectious laryngotracheitis virus was not detected by PCR. Newcastle disease virus (NDV) was not detected by PCR, but variable levels of anti-NDV HI antibody titres shows possible exposure to virulent strains or poor vaccine take, or both. For the burgeoning-intensive industry in Ethiopia, this study highlights several circulating infectious respiratory pathogens that can impact on poultry welfare and productivity.  相似文献   
4.
Vesicular‐arbuscular mycorrhizal (VAM) fungi have been proposed as a low‐input solution to the problem of inadequate phosphorus (P) levels in many tropical and subtropical soils. To determine the mycorrhizal dependency of two Hawaiian endemic tree species, mamane (Sophora chrysophylla Seem.) and koa (Acacia koa Gray), seedlings were grown in the greenhouse with and without the VAM fungus, Glomus aggregatum Schenck and Smith emend Koske, at three levels of soil solution P (0,0.02, and 0.20 mg P/L) in a volcanic ash soil. Inoculation significantly increased colonization of roots by the VAM fungus in both mamane and koa seedlings. At 0.02 mg P/L, mamane inoculated with the VAM fungus had significantly greater subleaflet P concentrations at 48 days after planting (DAP), and significantly greater leaf areas, shoot dry weights, and root lengths at harvest compared to uninoculated plants. At 0 mg P/L, koa grown in association with the VAM fungus had significantly greater subleaflet P concentrations at 41 DAP, and significantly greater leaf areas, and dry weights of leaves, stems, and roots at harvest. Mamane was highly dependent on the VAM association for maximum growth, while koa was moderately dependent on the VAM association. These results demonstrate that P uptake and early growth of mamane and koa can be increased significantly at low soil P levels by inoculating seedlings with an effective VAM fungus. Future research needs to demonstrate continuing positive growth benefits of VAM fungal inoculation after transplanting from the nursery to field conditions.  相似文献   
5.
Surveys were undertaken in six districts of southwestern Ethiopia from July to October 2003 to investigate farmers’ perceptions and management practices of insect pests on traditionally stored sorghum. The survey involved 138 randomly selected farmers who were interviewed using a semi-structured questionnaire. Storage insect pests were perceived as the major insect pests of sorghum. The majority of the farmers estimated sorghum yield losses of up to 50% due to insect damage during storage. High temperature and lack of storage hygiene were cited as the major factors resulting in insect infestation of stored sorghum. Infestations of stored sorghum insect pests were common on different forms of sorghum, which stored in various types of farm storage. Farmers classified sorghum varieties according to the level of resistance to stored sorghum insect pests. Only about 32% of the farmers had access to chemical insecticides for the control of stored sorghum insect pests, while the majority of them used cultural practices and locally available plant materials as storage protectants.  相似文献   
6.
Tetrahymena pyriformis cultures were maintained when transferred serially in solutions containing 105 to 107Klebsiella pneumoniae cells.ml?1, bacterial numbers that were observed to persist in the presence of protozoa. The number of cells of one strain of K. pneumoniae surviving predation in solution was essentially the same in the absence of an alternative prey as in the presence of a second K. pneumoniae strain. Toxins deleterious to protozoa did not appear as the animal consumed the bacteria. T. pyriformis reduced the abundance of Escherichia coli from about 108 to 106.ml?1. but the latter number persisted for 15 days; however, in solutions containing chloramphenicol, the abundance of E. coli fell to 590 cells. ml?1 in 15 days. In solutions containing the antibiotic, T. pyriformis reduced the Rhizobium sp. population from more than 106 to less than 103 cells in 10 days and K. pneumoniae from more than 108.ml?1 to zero in 18 days. An appreciable decline in abundance of these bacteria did not occur in the antibiotic-amended liquid free of protozoa. T. pyriformis did not greatly reduce Rhizobium sp. numbers when both were added to irradiated soil, but the predator caused the bacterial population to decline from 4 × 108 to fewer than 105.g?1 in 16 days in chloramphenicol-treated soil. Colpoda sp. inoculated with Rhizobium sp. into soil sterilized by autoclaving only reduced the prey abundance from 109 to 108.g?1, but the protozoan caused the bacterial population to fall to about 100.g?1 in 15 days in the presence of the antibiotic. The population of Rhizobium sp. added to nonsterile soil dropped from in excess of 108 to 6 × 106.g?1 in 29 days. but it declined to 550. g?1 in the same period when chloramphenicol was also introduced. It is concluded that the ability of these bacteria to maintain themselves in solution and in soil is governed by their capacity to reproduce and replace the cells consumed by predation.  相似文献   
7.
Summary Concentrations of phenamiphos ranging from 0 to 40 rg/g soil were established in a typical Oxisol (Tropeptic Eutrustox), inoculated or uninoculated with Glomus aggregatum. The effect of the nematicide on the development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was evaluated in the greenhouse using Leucaena leucocephala as an indicator host plant. Treatment of soil with phenamiphos did not have a significant influence on the development of mycorrhizal activity measured in terms of subleaflet phosphorus concentrations. Similarly, the nematicide did not have an adverse effect on the level of mycorrhizal colonization or on the P content of shoots, as determined at the time of harvest. However, shoot dry weight was adversely influenced by phenamiphos when the chemical was applied to the uninoculated soil at 20 g/g soil or higher, and when it was applied to the inoculated soil at 40 g/g soil. It is concluded that phenamiphos is not likely to influence the growth of Leucaena or its symbiotic association with VAM fungi if the concentrations applied do not exceed levels known to suppress nematodes.Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3146  相似文献   
8.
A greenhouse experiment was conducted to determine the degree to which Albizia ferruginea and Enterolobium cyclocarpum respond to colonization of their roots by the vesicular‐arbuscular mycorrhizal fungus (VAMF) Glomus aggregatum. Plants were grown in pots containing a subsurface ultisol uninoculated or inoculated with the fungus at three target soil solution phosphorus (P) concentrations. VAMF inoculation enhanced pinnule P content of Albizia but not of Enterolobium at the native P concentration of the experimental soil. However, dry matter yield was not affected by VAMF inoculation for either species. Mycorrhizal inoculation effect was either negative or nil at the highest soil solution P concentration tested. The highest mycorrhizal inoculation effect was observed at soil P concentration of 0.02 mg/L. Based on these data, both Albizia and Enterolobium were classified as highly mycorrhizal dependent species.  相似文献   
9.
Summary Experiments were conducted to determine the extent to which populations of Bradyrhizobium sp. strain Tal 209SR were suppressed by the antagonistic activity of a Streptomyces sp. isolated from a highly weathered tropical soil. The activity of the actinomycete was evaluated in culture medium in the presence or absence of clay minerals and in the soil from which the actinomycete was isolated after sterilization by gamma-irradiation. The presence of the actinomycete in culture medium was associated with a significant reduction in the density of Bradyrhizobium sp. (Tal 209SR). Nevertheless, the density of the Bradyrhizobium sp. surviving in the medium in the presence of the actinomycete was much higher than that normally observed when comparable densities of rhizobia are introduced into non-sterile soils. The presence of the antagonistic actinomycete in culture medium was associated with a drastic decrease in the optical density of the medium. This decrease was accompanied by a significant decrease in the insoluble exopolysaccharide content of the medium in addition to the significant decrease in bradyrhizobial cells. The actinomycete did not appear to significantly influence the growth and survival of the test Bradyrhizobium sp. in sterile soil. The inability of the actinomycete to significantly antagonize the test bacterium in sterile soil was not adequately explained by the presence of clay minerals.Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3129  相似文献   
10.
A sequential harvest experiment was conducted in the greenhouse to determine relative growth rate (RGR), specific absorption rate (SAR) of P, P utilization rate (PUR) and P utilization efficiency (PUE) of vesicular‐arbuscular mycorrhizal (VAM) and nonmycorrhizal Leucaena leucocephala. Total P content, root length and total dry‐matter yield of mycorrhizal plants were significantly higher than those of nonmycorrhizal plants beginning on 15, 25 and 25 days after planting, respectively. The length of root colonized by Glomus aggregatum increased exponentially with time and leveled off 30 days after planting. In mycorrhizal plants, RGR of roots (based on total root length) was lower than those of RGR of infected roots till 30 days after planting, after which time the trend was reversed. Although, RGR based on dry‐matter yield was higher in mycorrhizal plants than in nonmycorrhizal plants, the differences observed were not statistically significant. SAR of P was higher in mycorrhizal plants than in nonmycorrhizal ones till 30 days after planting. Even though, total P contents and concentrations in mycorrhizal plants were higher than nonmycorrhizal plants, PUR and PUE were higher in nonmycorrhizal plants. These results indicate that, although VAM plants were very efficient in P absorption and accumulation, they were not superior to non‐VAM plants in P utilization. However, plant species forming effective symbiosis with VAM fungi are likely to be successful competitors in nutrient‐poor environments than plants not infected with the fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号