首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
植物保护   2篇
  2017年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
In this paper, we attempted to determine the most stable or unstable regions of vegetation cover in Mongolia and their spatio-temporal dynamics using Terra/MODIS Normalized Difference Vegetation Index(NDVI) dataset, which had a 250-m spatial resolution and comprised 6 periods of 16-day composited temporal resolution data(from 10 June to 13 September) for summer seasons from 2000 to 2012. We also used precipitation data as well as biomass data from 12 meteorological stations located in 4 largest natural zones of Mongolia. Our study showed that taiga and forest steppe zones had relatively stable vegetation cover because of forest characteristics and relatively high precipitation. The highest coefficient of variation(CV) of vegetation cover occurred frequently in the steppe and desert steppe zones, mainly depending on variation of precipitation. Our results showed that spatial and temporal variability in vegetation cover(NDVI or plant biomass) of Mongolia was highly dependent on the amount, distribution and CV of precipitation. This suggests that the lowest inter-annual CV of NDVI can occur during wet periods of growing season or in high precipitation regions, while the highest inter-annual CV of NDVI can occur during dry periods and in low precipitation regions. Although the desert zone received less precipitation than other natural zones of the country, it had relatively low variation compared to the steppe and desert steppe, which could be attributed to the very sparse vegetation in the desert.  相似文献   
2.
This study investigated the seasonal variations of the normalized difference vegetation index(NDVI) and its relationships with climatic variables and topography in a small-scale(20 km×20 km) area(i.e., Tsogt-Ovoo village) within the desert steppe zone of Mongolia using in-situ observed climate data and satellite remote sensing data. We found that the topography is very important for vegetation growth in the desert steppe although the summer precipitation is the constraining factor. The unexpectedly high NDVI(up to 0.56), as well as the high aboveground biomass, in the valley bottom was primarily resulted from the topography-modulated redistribution of overland flow after relatively heavy precipitation events during the growing season. This makes the valley bottoms in desert steppes not only reliable feeding resources for livestock but also heavens for wild lives. But, the detected large standard deviation of annual maximum NDVI(NDVI_(max)) from 2000 to 2013 in the valley bottom in response to rather variable precipitation implies that the valley bottoms under desert steppe climates are more vulnerable to climatic change.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号