首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
园艺   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Context

Varying altitudes and aspects within small distances are typically found in mountainous areas. Such a complex topography complicates the accurate quantification of forest C dynamics at larger scales.

Objectives

We determined the effects of altitude and aspect on forest C cycling in a typical, mountainous catchment in the Northern Limestone Alps.

Methods

Forest C pools and fluxes were measured along two altitudinal gradients (650–900 m a.s.l.) at south-west (SW) and north-east (NE) facing slopes. Net ecosystem production (NEP) was estimated using a biometric approach combining field measurements of aboveground biomass and soil CO2 efflux (SR) with allometric functions, root:shoot ratios and empirical SR modeling.

Results

NEP was higher at the SW facing slope (6.60?±?3.01 t C ha?1  year?1), when compared to the NE facing slope (4.36?±?2.61 t C ha?1 year?1). SR was higher at the SW facing slope too, balancing out any difference in NEP between aspects (NE: 1.30?±?3.23 t C ha?1 year?1, SW: 1.65?±?3.34 t C ha?1 year?1). Soil organic C stocks significantly decreased with altitude. Forest NPP and NEP did not show clear altitudinal trends within the catchment.

Conclusions

Under current climate conditions, altitude and aspect adversely affect C sequestering and releasing processes, resulting in a relatively uniform forest NEP in the catchment. Hence, including detailed climatic and soil conditions, which are driven by altitude and aspect, will unlikely improve forest NEP estimates at the scale of the studied catchment. In a future climate, however, shifts in temperature and precipitation may disproportionally affect forest C cycling at the southward slopes through increased water limitation.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号